
Math 108B - Home Work # 6 Solutions

1. If A is an n × n upper-triangular matrix (i.e., Aij = 0 for all i > j), show that
det A =

∏n
i=1 Aii.

Solution. As done in class, we can compute the determinant of A by simplifying the
wedge product of the columns of A:

A11e1 ∧ (A12e1 + A22e2) ∧ · · · ∧ (A1ne1 + · · ·+ Annen).

We first distribute the wedge-products accross all the sums, and then use the fact
that any wedge product containing some ei twice is 0. This means that the only
(possibly) nonzero term we get when we distribute is from taking e1 from the first
factor, and then e2 from the second factor (since we can’t take e1 a second time), and
then e3 from the third factor and so forth. Thus the above wedge product simplifies
to A11 · · ·Anne1 ∧ · · · ∧ en, and by definition det A is the scalar A11 · · ·Ann.

2. Let A be a nilpotent n×n matrix. Show that A is diagonalizable if and only if A = 0.

Solution. Clearly, if A = 0, then A is diagonal and hence diagonalizable. Conversely,
assume that A is diagonalizable. This means that A = C−1DC for a diagonal matrix
D and an invertible matrix C. Thus Dm = (CAC−1)m = CAC−1CAC−1 · · ·CAC−1 =
CAmC−1 = 0. However, if the diagonal entries of D are d1, . . . , dn, then the diagonal
entries of Dm are just dm

1 , . . . , dm
n . Since Dm = 0, dm

i = 0 for all i, and hence di = 0
for all i. This shows that D = 0 and it follows that A = C−1DC = 0.

3. This question asks you to find some 3 × 3 matrices. Your answers will be non-
diagonalizable, since they will each have only 2 linearly independent eigenvectors.

a) Give an example of a 3× 3 matrix with only one eigenvalue (over C), but with a 2-
dimensional eigenspace. What are the generalized eigenspaces of C3 for your example?

b) Give an example of a 3× 3 matrix with only two distinct eigenvalues (over C), each
of which has a 1-dimensional eigenspace. What are the generalized eigenspaces of C3

for your example?

Solution. Our examples will be upper-triangular matrices, since in this case we can
see the eigenvalues and their multiplicities directly from the main diagonal. For (a),
call the single eigenvalue λ. The matrix must then have λ in all 3 places along the main
diagonal. If we leave a 0 in the (1, 2)-entry, we see that e1 and e2 are eigenvectors. We
must now fill in the third column so that no additional eigenvectors involving e3 arise.
For instance, take the matrix

A =

 λ 0 0
0 λ 1
0 0 λ

 .

Then the eigenspace corresponding to λ is null(A − λI) = span(e1, e2) since (A −
λI)(e3) = e2. Since we only have one eigenvalue, there is only one generalized eigenspace.
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Since we know that V = C3 is the direct sum of all the generalized eigenspaces, this
one generalized eigenspace must be all of C3.

For (b), suppose the two eigenvalues are 1 and 2. One of these must occur with
multiplicity 2, so we can suppose the entries on the main diagonal are 1, 2 and 2. By
setting the (1, 2)-entry to 0, we can make e1 an eigenvector with eigenvalue 1 and e2

an eigenvector with eigenvalue 2. As before, if we place a 1 in the (2, 3)-entry, the
eigenspace of 2 will be only 1-dimensional. Thus our matrix is

B =

 1 0 0
0 2 1
0 0 2

 .

The generalized eigenspaces are Ce1 for the eigenvalue 1 and span(e2, e3) for the eigen-
value 2.

4. LADR Solutions (p. 188-190)

3. Suppose that a0v + a1Tv + · · ·+ am−1T
m−1v = 0. Applying Tm−1 to this equation

and noting that Tm−1v 6= 0 while Tmv = 0, we get a0T
m−1v = 0. It follows that a0 = 0.

Now apply Tm−2 to the equation a1Tv + · · · + am−1T
m−1v = 0 to get a1T

m−1v = 0.
Hence a1 = 0. Repeating in this manner we see that all the ai must be 0. Thus the
vectors v, Tv, . . . , Tm−1v are linearly independent.

5. Suppose that (ST )n = 0 for some n ≥ 0. Then (TS)n+1 = TSTS · · ·TSTS =
T (ST )nS = 0. Hence TS is also nilpotent.

10. We give a counterexample. Let T : R2 → R2 be defined by T (x, y) = (y, 0)
for all x, y ∈ R. Then null(T ) = Re1 = range(T ). Hence we cannot have R2 =
null(T )⊕ range(T ).

11. We know that dim V = dim null(T n) + dim range(T n) so it suffices to show that
null(T n)∩range(T n) = {0} (Theorem 2.18 then implies that dim V = dim(null(T n)+
range(T n)) and hence null(T n) + range(T n) = V ). Let v ∈ null(T n) ∩ range(T n).
This means that T n(v) = 0 and v = T n(w) for some w ∈ V . Then T 2n(w) = 0, which
implies that w ∈ null(T 2n) = null(T n) by Proposition 8.6. Thus v = T n(w) = 0.
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