Math 108B - Home Work # 4 Solutions

LADR Problems p. 125

24. Notice that ¢(p) = p(1/2) is a linear functional on Py(R). Thus we follow the idea
of the proof of 6.45 to find a polynomial ¢ € P2(R) such that ¢(p) = (p,q) = fol p(z)q(x) dx
for all p. We need an orthonormal basis for P,(R), which we have from homework 3: e; =
1,65 = 232 — V3, e5 = 6v522 — 6v/5x + /5. Now, as in the proof of 6.45, we see that

g = ¢ler)er + plez)ez + p(es)es
— ley + 0ey + (—V5/2)es
= 1— (152> — 152 + 5/2)
= —152° + 152 — 3/2.

27. In this product, we regard F™ as an inner product space via the dot product. Let
z=1(21,...,2,) and w = (wy,...,w,). We have Tz - w = Z;:ll 2iWit1 = z - (we, ..., wy,0).

Thus T*(wy, . .., w,) = (wa, ..., wy,0).

29. First assume that U is invariant under 7. This means that Tu € U for all u € U.
Let v € UL, Ifu € U, (u, T*v) = (Tu,v) = 0 since Tu € U. Thus T*v € UL. The same
argument proves the converse, since if we replace U with U+ we know that (U+)* = U, and
if we replace T' with 7™, we know that (T*)* =T.

p. 158

1. (a) To show that 7" is not self-adjoint it suffices to find polynomials p(z), g(z) € Pa(R)
such that (T'p,q) # (p,Tq). We can choose p(x) = 1 and ¢(z) =z, so Tp =0 and T'q = q.
Thus (T'p,q) = 0, while (p, Tq) = fol xdr=1/2.

(b) This is not a contradiction because the basis {1, z, 2%} is not an orthonormal basis.
In general, an operator T is self-adjoint if and only if its matrix in any orthonormal basis is
conjugate-symmetric.

4. First assume that P is an orthogonal projection onto a subspace U of V. Let v,w € V.
Then (Pv,w) = (Pv, (w— Pw)+ Pw) = (Pv, Pw) = (Pv+ (v— Pv), Pw) = (v, Pw), where
we have used the fact that Pv, Pw € U and v — Pv,w — Pw € U*. This shows that P = P*.

Conversely, suppose P = P? and P is self-adjoint. By the spectral theorem, we can find
an orthonormal basis {ey,...,e,} of eigenvectors for P, and the matrix of P with respect
to this basis will be diagonal. If the diagonal entries of this matrix are dy,...,d, € F, then
the diagonal entries of the matrix for P? will be d3,...,d?. Since P = P? we know that
d; = d? for all 7. Thus each d; is either 0 or 1. Now let U be the span of those eigenvectors
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e; for which d; = 1, ie. U is the eigenspace corresponding to the eigenvalue 1 of P. Thus
if u € U, we have Pu = u. Furthermore, since Ut is the eigenspace of 0, v € U+ implies
Pv=0. Thus P = Py.

8. If T is self-adjoint, that means that Tu - v = u - Tw for all u,v € R3. For u = (1,2,3)
and v = (2,5,7), we get Tu-v =(0,0,0)-(2,5,7) =0, while u-Tv = (1,2,3) - (2,5,7) = 33.
Thus T is not self-adjoint.

9. Suppose T is a normal operator on the complex inner product space V', and that all
the eigenvalues of T' are real. By the spectral theorem, there exists an orthonormal basis
of V' consisting of eigenvectors for T. If we write T" with respect to this basis, its matrix
will be diagonal with real entries (its eigenvalues) along the diagonal. Since such a matrix
clearly equals its conjugate transpose, and it represents 7" in an orthonormal basis, 7" must
be self-adjoint.

Conversely, suppose T' is a self-adjoint operator on the complex inner product space V.
By Prop. 7.1 every eigenvalue of T is real.



