
Math 108B - Home Work # 4 Solutions

LADR Problems p. 125
24. Notice that ϕ(p) = p(1/2) is a linear functional on P2(R). Thus we follow the idea

of the proof of 6.45 to find a polynomial q ∈ P2(R) such that ϕ(p) = 〈p, q〉 =
∫ 1

0
p(x)q(x) dx

for all p. We need an orthonormal basis for P2(R), which we have from homework 3: e1 =
1, e2 = 2

√
3x−

√
3, e3 = 6

√
5x2 − 6

√
5x +

√
5. Now, as in the proof of 6.45, we see that

q = ϕ(e1)e1 + ϕ(e2)e2 + ϕ(e3)e3

= 1e1 + 0e2 + (−
√

5/2)e3

= 1 − (15x2 − 15x + 5/2)

= −15x2 + 15x− 3/2.

27. In this product, we regard F n as an inner product space via the dot product. Let
z = (z1, . . . , zn) and w = (w1, . . . , wn). We have Tz · w =

∑n−1
i=1 ziwi+1 = z · (w2, . . . , wn, 0).

Thus T ∗(w1, . . . , wn) = (w2, . . . , wn, 0).

29. First assume that U is invariant under T . This means that Tu ∈ U for all u ∈ U .
Let v ∈ U⊥. If u ∈ U , 〈u, T ∗v〉 = 〈Tu, v〉 = 0 since Tu ∈ U . Thus T ∗v ∈ U⊥. The same
argument proves the converse, since if we replace U with U⊥ we know that (U⊥)⊥ = U , and
if we replace T with T ∗, we know that (T ∗)∗ = T .
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1. (a) To show that T is not self-adjoint it suffices to find polynomials p(x), q(x) ∈ P2(R)

such that 〈Tp, q〉 6= 〈p, Tq〉. We can choose p(x) = 1 and q(x) = x, so Tp = 0 and Tq = q.

Thus 〈Tp, q〉 = 0, while 〈p, Tq〉 =
∫ 1

0
x dx = 1/2.

(b) This is not a contradiction because the basis {1, x, x2} is not an orthonormal basis.
In general, an operator T is self-adjoint if and only if its matrix in any orthonormal basis is
conjugate-symmetric.

4. First assume that P is an orthogonal projection onto a subspace U of V . Let v, w ∈ V .
Then 〈Pv, w〉 = 〈Pv, (w−Pw)+Pw〉 = 〈Pv, Pw〉 = 〈Pv +(v−Pv), Pw〉 = 〈v, Pw〉, where
we have used the fact that Pv, Pw ∈ U and v−Pv, w−Pw ∈ U⊥. This shows that P = P ∗.

Conversely, suppose P = P 2 and P is self-adjoint. By the spectral theorem, we can find
an orthonormal basis {e1, . . . , en} of eigenvectors for P , and the matrix of P with respect
to this basis will be diagonal. If the diagonal entries of this matrix are d1, . . . , dn ∈ F , then
the diagonal entries of the matrix for P 2 will be d2

1, . . . , d
2
n. Since P = P 2, we know that

di = d2
i for all i. Thus each di is either 0 or 1. Now let U be the span of those eigenvectors
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ei for which di = 1, ie. U is the eigenspace corresponding to the eigenvalue 1 of P . Thus
if u ∈ U , we have Pu = u. Furthermore, since U⊥ is the eigenspace of 0, v ∈ U⊥ implies
Pv = 0. Thus P = PU .

8. If T is self-adjoint, that means that Tu · v = u · Tv for all u, v ∈ R3. For u = (1, 2, 3)
and v = (2, 5, 7), we get Tu · v = (0, 0, 0) · (2, 5, 7) = 0, while u · Tv = (1, 2, 3) · (2, 5, 7) = 33.
Thus T is not self-adjoint.

9. Suppose T is a normal operator on the complex inner product space V , and that all
the eigenvalues of T are real. By the spectral theorem, there exists an orthonormal basis
of V consisting of eigenvectors for T . If we write T with respect to this basis, its matrix
will be diagonal with real entries (its eigenvalues) along the diagonal. Since such a matrix
clearly equals its conjugate transpose, and it represents T in an orthonormal basis, T must
be self-adjoint.

Conversely, suppose T is a self-adjoint operator on the complex inner product space V .
By Prop. 7.1 every eigenvalue of T is real.
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