Math 108B - Home Work \# 3
 Due: Wednesday, April 23, 2008

1. LADR p. 123-124: Exercises 10, 14, 15, 21 (For 14, first read Corollary 6.27).
2. (Do not turn in) For Ex. 10, does anything change if you apply the Gram-Schmidt Process to the basis $\left\{1, x, x^{2}\right\}$ for $\mathcal{P}_{2}(\mathbb{C})$ with the inner product $\langle p, q\rangle=\int_{0}^{1} p(x) \overline{q(x)} d x$?
3. If U is a subset of an inner product space V (but not necessarily a subspace), we can still define

$$
U^{\perp}=\{v \in V \mid\langle v, u\rangle=0 \forall u \in U\} .
$$

(a) Prove that $U^{\perp}=\operatorname{span}(U)^{\perp}$.
(Recall, that $\operatorname{span}(U)$ is the subspace of V consisting of all finite F-linear combinations of vectors in U.)
(b) Use (a) to prove that $\left(U^{\perp}\right)^{\perp}=\operatorname{span}(U)$.

In particular, this exercise implies that if $\left\{u_{1}, \ldots, u_{m}\right\}$ is a basis for the subspace U, then

$$
U^{\perp}=\left\{v \in V \mid\left\langle v, u_{i}\right\rangle=0 \forall i\right\} .
$$

