Math 108B - Home Work \# 1
 Due: Friday, April 11, 2008

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by the matrix

$$
\left(\begin{array}{rr}
1 & -1 \\
2 & 2 \\
0 & 3
\end{array}\right)
$$

with respect to the standard bases. Find bases for \mathbb{R}^{2} and \mathbb{R}^{3} in which the matrix of T is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

2. The matrix

$$
\left(\begin{array}{rr}
4 & -1 \\
2 & 4
\end{array}\right)
$$

represents a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with respect to the basis $\left\{v_{1}, v_{2}\right\}$ where $v_{1}=(1,1)$ and $v_{2}=(-1,1)$. Find the matrix of T with respect to the basis $\left\{w_{1}, w_{2}\right\}$ where $w_{1}=(1,2)$ and $w_{2}=(0,1)$.
3. Let $T: V \rightarrow W$ be a linear transformation, and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. Show that T is invertible if and only if $\left\{T v_{1}, \ldots, T v_{n}\right\}$ is a basis for W.
4. The trace of an $n \times n$ matrix A is defined as the sum of all the entries on the main diagonal of A. That is,

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i}
$$

where $A_{i j}$ denotes the entry of A in the $i^{\text {th }}$ row and $j^{\text {th }}$ column.
(a) Show that for any two $n \times n$ matrices A and $B, \operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(b) Use (a) to show that if X and Y are similar matrices then $\operatorname{tr}(X)=\operatorname{tr}(Y)$.
5. Let V be an inner-product space, and let W be a subspace of V. Define the orthogonal complement of W by

$$
W^{\perp}=\{v \in V \mid\langle v, w\rangle=0 \forall w \in W\}
$$

Show that W^{\perp} is a subspace of V.

