MATH 108 A WINTER 2008 FINAL EXAM

NAME:

SHOW YOUR WORK CLEARLY. OTHERWISE NO PARTIAL CREDIT.

_____ ___

FINAL (40)

MIDTERM (20)

Attendance+ quizzes (30)

HOMEWORK (15) _____

FINAL GRADE _____

1) (6 points) Complete the following definitions: (V vector space)

(a) $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k \in V$ are linearly independent if.....

(b) Let $T: V \to V$ be a linear map. $\lambda \in \mathbb{C}$ is an eigenvalue of T if.....

.....

2) (10 points) Find a basis of the subspace

(a)
$$U_1 = \{ \vec{x} = (x_1, ..., x_6) \in \mathbb{R}^6 : x_1 = -x_3, x_4 - 2x_6 = 0 \}$$

(b) $U_2 = span\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}, \text{ with }$

 $\vec{v}_1 = (1, -2, -3, 0), \ \vec{v}_2 = (0, 0, 1, 0), \ \vec{v}_3 = (-1, 2, 1, -1), \ \vec{v}_4 = (0, 0, 1, 1).$

3) (15 points) Given the linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as

$$T\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}4x-5y\\2x-2y\\x+y\end{pmatrix}.$$

- (a) Find the matrix A_T which represents this linear map.
- (b) Describe the null(T) and the Range(T).
- (c) Is T injective? Surjective?
- (d) Find the eigenvalues and its associated eigenvectors.
- (e) Compute the matrix A_T^{100} .

.

4) (12 points) Let V be a vector space and $T \in \mathcal{L}(V)$ such that $T^3 = T$.

- a) Which are the possible eigenvalues of T?
- b) Prove that $range(T) \cap null(T) = \{0\}.$
- Assume now that V is finite dimensional with dim(V) = n.
- c) Prove that $null(T) \oplus range(T) = V$.
- d) Give an example of a 3×3 non-diagonal matrix A that verify the equation $A^3 = A$.

.