MATH 108 A WINTER 2008 FINAL EXAM

SHOW YOUR WORK CLEARLY. OTHERWISE NO PARTIAL CREDIT.
FINAL (40) \qquad
MIDTERM (20)
Attendance+ quizzes (30)
\qquad

HOMEWORK (15)
\qquad

FINAL GRADE \qquad

1) (6 points) Complete the following definitions: (V vector space)
(a) $\vec{v}_{1}, \vec{v}_{2}, . ., \vec{v}_{k} \in V$ are linearly independent if.
(b) Let $T: V \rightarrow V$ be a linear map. $\lambda \in \mathbb{C}$ is an eigenvalue of T if. \qquad
2) (10 points) Find a basis of the subspace
(a) $U_{1}=\left\{\vec{x}=\left(x_{1}, . ., x_{6}\right) \in \mathbb{R}^{6}: x_{1}=-x_{3}, x_{4}-2 x_{6}=0\right\}$.
(b) $U_{2}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$, with
$\vec{v}_{1}=(1,-2,-3,0), \vec{v}_{2}=(0,0,1,0), \vec{v}_{3}=(-1,2,1,-1), \vec{v}_{4}=(0,0,1,1)$.
3) (15 points) Given the linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined as

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
4 x-5 y \\
2 x-2 y \\
x+y
\end{array}\right)
$$

(a) Find the matrix A_{T} which represents this linear map.
(b) Describe the $\operatorname{null}(T)$ and the Range (T).
(c) Is T injective? Surjective?
(d) Find the eigenvalues and its associated eigenvectors.
(e) Compute the matrix A_{T}^{100}.
4) (12 points) Let V be a vector space and $T \in \mathcal{L}(V)$ such that $T^{3}=T$.
a) Which are the possible eigenvalues of T ?
b) Prove that range $(T) \cap \operatorname{null}(T)=\{0\}$.

Assume now that V is finite dimensional with $\operatorname{dim}(V)=n$.
c) Prove that $\operatorname{null}(T) \oplus \operatorname{range}(T)=V$.
d) Give an example of a 3×3 non-diagonal matrix A that verify the equation $A^{3}=A$.

