Math 108A - Take-Home Midterm Solutions

1. Are the following functions linear maps between F-vector spaces? Justify your answers.
(a) $F=\mathbb{R}$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $T(x, y)=(y, x)$ for all $x, y \in \mathbb{R}$.

Solution. Yes, T is a linear map. If $a \in F$ and $x, y \in \mathbb{R}$, we have $T(a(x, y))=$ $T(a x, a y)=(a y, a x)=a(y, x)=a T(x, y)$. Also, if $x^{\prime}, y^{\prime} \in \mathbb{R}$, then $T((x, y)+$ $\left.\left(x^{\prime}, y^{\prime}\right)\right)=T\left(x+x^{\prime}, y+y^{\prime}\right)=\left(y+y^{\prime}, x+x^{\prime}\right)=(y, x)+\left(y^{\prime}, x^{\prime}\right)=T(x, y)+T\left(x^{\prime}, y^{\prime}\right)$.
(b) $F=\mathbb{C}$ and $S: \mathbb{C} \rightarrow \mathbb{C}^{2}$ is defined by $S(x+i y)=(x+i x, y+i y)$ for all $x, y \in \mathbb{R}$. Solution. No, S is not a linear map. Notice that $S(i)=S(0+1 i)=(0,1+i)$, and $S(-1)=S(-1+0 i)=(-1-i, 0)$. But $-1=i^{2}$, so if S was linear, we would have $S(-1)=S\left(i^{2}\right)=i S(i)=i(0,1+i)=(0,-1+i) \neq(-1-i, 0)$.
(Note: S would be a linear map if $F=\mathbb{R}$ instead of \mathbb{C}.)
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map $T(x, y)=(3 x-y, 2 y-2 x)$.
(a) Find $\operatorname{Mat}(T, \mathcal{E}, \mathcal{E})$ where $\mathcal{E}=\left\{e_{1}, e_{2}\right\}$ is the standard basis for \mathbb{R}^{2}.

Solution. The columns for $\operatorname{Mat}(T, \mathcal{E}, \mathcal{E})$ will be the coordinates of $T e_{1}$ and $T e_{2}$ in the standard basis. Since $T e_{1}=T(1,0)=(3,-2)=3 e_{1}-2 e_{2}$ and $T e_{2}=T(0,1)=(-1,2)=-e_{1}+2 e_{2}$, the matrix for T in the standard basis will be

$$
\left(\begin{array}{cc}
3 & -1 \\
-2 & 2
\end{array}\right)
$$

(b) Find $\operatorname{Mat}(T, \mathcal{B}, \mathcal{B})$ where \mathcal{B} is the basis $\{(1,2),(-1,1)\}$ for \mathbb{R}^{2}.

Solution. The columns for $\operatorname{Mat}(T, \mathcal{B}, \mathcal{B})$ will be the coordinates of $T(1,2)$ and $T(-1,1)$ in the basis \mathcal{B}. Since $T(1,2)=(1,2)=1(1,2)+0(-1,1)$ and $T(-1,1)=$ $(-4,4)=0(1,2)+4(-1,1)$, the matrix for T in the basis \mathcal{B} will be

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right) .
$$

3. Prove that the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ from Problem 2 is invertible and find a formula for its inverse.

Solution. To prove T is invertible, it suffices to find an inverse $S \in$ mathcalL $\left(\mathbb{R}^{2}\right)$ such that $S T=T S=I d_{\mathbb{R}^{2}}$. Since $T e_{1}=(3,-2)$ and $T e_{2}=(-1,2)$, the requirements that $S T e_{1}=e_{1}$ and $S T e_{2}=e_{2}$ show that we must have $S(3,-2)=(1,0)$ and $S(-1,2)=$ $(0,1)$. Since $e_{1}=(1,0)=\frac{1}{2}(3,-2)+\frac{1}{2}(-1,2)$, we must have

$$
S e_{1}=\frac{1}{2} S(3,-2)+\frac{1}{2} S(-1,2)=(1 / 2,1 / 2) .
$$

Similarly, since $e_{2}=(0,1)=\frac{1}{4}(3,-2)+\frac{3}{4}(-1,2)$, we must have

$$
S e_{2}=\frac{1}{4} S(3,-2)+\frac{3}{4} S(-1,2)=(1 / 4,3 / 4) .
$$

Thus the matrix for S with respect to the standard basis will be

$$
\left(\begin{array}{ll}
1 / 2 & 1 / 4 \\
1 / 2 & 3 / 4
\end{array}\right),
$$

and we have $S(x, y)=(x / 2+y / 4, x / 2+3 y / 4)$ for all $x, y \in \mathbb{R}$. To check that $S=T^{-1}$, we check that $S T(x, y)=(x, y)=T S(x, y)$ for all $x, y \in \mathbb{R}$. (By results we proved in class, it also suffices to check that $\left.\operatorname{Mat}(S, \mathcal{E}) \operatorname{Mat}(T, \mathcal{E})=I_{2}\right)$. We have
$S T(x, y)=S(3 x-y, 2 y-2 x)=((3 x-y) / 2+(2 y-2 x) / 4,(3 x-y) / 2+3(2 y-2 x) / 4)=(x, y)$,
and

$$
\begin{aligned}
T S(x, y) & =T(x / 2+y / 4, x / 2+3 y / 4) \\
& =(3(x / 2+y / 4)-(x / 2+3 y / 4), 2(x / 2+3 y / 4)-2(x / 2+y / 4)) \\
& =(x, y)
\end{aligned}
$$

4. Let U be a subspace of a finite-dimensional vector space V.
(a) Show that there exists a linear map $T: V \rightarrow V$ with $\operatorname{null}(T)=U$.

Solution. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis for U, and extend it to a basis $\left\{u_{1}, \ldots, u_{m}, v_{m+1}, \ldots, v_{n}\right\}$ for V. We define $T: V \rightarrow V$ to be the unique linear map such that $T\left(u_{i}\right)=0$ for all i with $1 \leq i \leq m$ and $T\left(v_{j}\right)=v_{j}$ for all j with $m+1 \leq j \leq n$. (It was shown in class that there is always a unique linear map that sends the basis vectors to any vectors of our choosing. On arbitrary linear combinations of the basis vectors, T must be defined by $T\left(c_{1} u_{1}+\cdots+c_{n} v_{n}\right)=c_{1} T u_{1}+\cdots+c_{n} T v_{n}$.) Clearly $U=\operatorname{span}\left(u_{1}, \ldots, u_{m}\right) \subseteq \operatorname{null}(T)$ by construction. But we also see that

$$
\begin{aligned}
\operatorname{range}(T) & =\left\{T\left(c_{1} u_{1}+\cdots+c_{n} v_{n}\right) \mid c_{i} \in F\right\} \\
& =\left\{c_{m+1} v_{m+1}+\cdots+c_{n} v_{n} \mid c_{i} \in F\right\} \\
& =\operatorname{span}\left(v_{m+1}, \ldots, v_{n}\right)
\end{aligned}
$$

since $v_{j}=T v_{j}$ for all v_{j}. Thus dim $\operatorname{range}(T)=n-m$. By the rank-nullity theorem,

$$
\operatorname{dim} \operatorname{null}(T)=\operatorname{dim} V-\operatorname{dim} \operatorname{range}(T)=n-(n-m)=m=\operatorname{dim} U
$$

Therefore, we must have equality $U=\operatorname{null}(T)$.
(b) Show that there exists a linear map $S: V \rightarrow V$ with range $(S)=U$.

Solution. We keep the same notation for basis vectors as in (a). We define $S: V \rightarrow V$ to be the unique linear map such that $S\left(u_{i}\right)=u_{i}$ for all i with $1 \leq i \leq m$ and $S\left(v_{j}\right)=0$ for all j with $m+1 \leq j \leq n$. The same argument as above shows that $\operatorname{range}(S)=\operatorname{span}\left(u_{1}, \ldots, u_{m}\right)=U$.
(c) Give examples of such S and T as above when U is the subspace $\mathbb{R}(1,1,1)$ of $V=\mathbb{R}^{3}$.
Solution. In the above notation, we must complete the basis $\left\{u_{1}\right\}$ for U, where $u_{1}=(1,1,1)$ to a basis of V. So let $v_{2}=(0,1,0)$ and $v_{3}=(0,0,1)$. As above, $T: V \rightarrow V$ will be defined by $T\left(u_{1}\right)=0, T\left(v_{2}\right)=v_{2}$ and $T\left(v_{3}\right)=v_{3}$. Thus
$T(x, y, z)=T\left(x u_{1}+(y-x) v_{2}+(z-x) v_{3}\right)=(y-x) v_{2}+(z-x) v_{3}=(0, y-x, y-x)$.
Meanwhile, S is defined by $S\left(u_{1}\right)=u_{1}$ and $S\left(v_{2}\right)=S\left(v_{3}\right)=0$. Thus we have

$$
S(x, y, z)=S\left(x u_{1}+(y-x) v_{2}+(z-x) v_{3}\right)=x S u_{1}=x u_{1}=(x, x, x) .
$$

5. (Extra Credit.) Let U be a subspace of V. Show that there exists a linear map $T: V \rightarrow V$ with $\operatorname{null}(T)=U$ and range $(T)=U$ if and only if $\operatorname{dim} U=\frac{1}{2} \operatorname{dim} V$.
Solution. \Rightarrow : Assume $\operatorname{null}(T)=U=\operatorname{range}(T)$. By the rank-nullity theorem, we have $\operatorname{dim} V=\operatorname{dim} \operatorname{null}(T)+\operatorname{dim} \operatorname{range}(T)=2 \operatorname{dim} U$. Thus $\operatorname{dim} U=\frac{1}{2} \operatorname{dim} V$.
\Leftarrow : Assume that $\operatorname{dim} U=\frac{1}{2} \operatorname{dim} V$. As in the solution to 4 , we choose a basis $\left\{u_{1}, \ldots, u_{m}\right\}$ of U and extend it to a basis $\left\{u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m}\right\}$ of V. We define $T: V \rightarrow V$ to be the unique linear map such that $T\left(v_{i}\right)=u_{i}$ and $T\left(u_{i}\right)=0$ for all i with $1 \leq i \leq m$. As in the solution to $4(\mathrm{a})$, we see that $\operatorname{range}(T)=\operatorname{span}\left(u_{1}, \ldots, u_{m}\right)=U$. Since $U \subseteq \operatorname{null}(T)$ and it follows from the rank-nullity theorem that both subspaces have dimension m, we must have $U=\operatorname{null}(T)$.
