Math 108A - Take-Home Midterm Solutions

1. Are the following functions linear maps between F-vector spaces? Justify your answers.

(a) F=TRand T :R?* — R? is defined by T(z,y) = (y,z) for all z,y € R.
Solution. Yes, T is a linear map. If a € F and z,y € R, we have T'(a(z,y)) =
T(ax,ay) = (ay,ax) = a(y,z) = aT(x,y). Also, if 2/,y € R, then T((x,y) +
(@' y)) =T(x+a"y+y) = (y+y,z+2) = (y,2) + (¢, 2") = T(2,y) + T(«, y).
(b) F=C and S : C — C? is defined by S(x +1y) = (z + iz,y + iy) for all z,y € R.
Solution. No, S is not a linear map. Notice that S(i) = S(0 + 1) = (0,1 + 7),
and S(—1) = S(=1+0i) = (=1 —1,0). But —1 =2, so if S was linear, we would
have S(—1) = S(i?) =S(i) = (0,1 +4) = (0, =1 +4) # (=1 —4,0).
(Note: S would be a linear map if F' = R instead of C.)

2. Let T : R? — R? be the linear map T'(z,y) = (32 — vy, 2y — 2x).

(a) Find Mat(T,E,E) where £ = {e1, 5} is the standard basis for R?.

Solution. The columns for Mat(T,E,€E) will be the coordinates of Te; and
Tes in the standard basis. Since Te; = T(1,0) = (3,—2) = 3e; — 2ey and
Tey =T(0,1) = (—1,2) = —ey + 2e5, the matrix for 7" in the standard basis will

be
3 -1
-2 2 '
(b) Find Mat(T, B, B) where B is the basis {(1,2),(—1,1)} for R?.
Solution. The columns for Mat(T, B, B) will be the coordinates of T'(1,2)
1

T(—1,1) in the basis B. Since T'(1,2) = (1,2) = 1(1,2)+0(—1,1) and T'(—1,
(—4,4) =0(1,2) + 4(—1,1), the matrix for 7" in the basis B will be

(03)

3. Prove that the linear map 7' : R? — R? from Problem 2 is invertible and find a formula
for its inverse.

and
1) =

Solution. To prove T is invertible, it suffices to find an inverse S € mathcal L(R?) such
that ST = T'S = Idg2. Since Te; = (3,—2) and Tey = (—1,2), the requirements that
STe; = e; and STey = ey show that we must have S(3,—2) = (1,0) and S(—1,2) =
(0,1). Since e; = (1,0) = (3, —2) + 3(—1,2), we must have

1

Sex = 55(3,-2) + %S(—l,Q) = (1/2,1/2).
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Similarly, since e; = (0,1) = (3, —2) + 2(—1,2), we must have
1 3
Sey = 15(3, —2) + ZS(_LQ) =(1/4,3/4).
Thus the matrix for S with respect to the standard basis will be
1/2 1/4
1/2 3/4 )"
and we have S(z,y) = (z/2+y/4,2/2+3y/4) for all x,y € R. To check that S = T7!,

we check that ST (z,y) = (z,y) = T'S(x,y) for all ,y € R. (By results we proved in
class, it also suffices to check that Mat(S,E)Mat(T,E) = I). We have

ST(z,y) = S(3x—y, 2y—2x) = ((3x—y)/2+(2y—2x) /4, (3z—y)/2+3(2y—22)/4) = (z,y),
and

TS(x,y) = T(x/2+y/4,2/2+ 3y/4)
(3(x/2+y/4) — (/2 + 3y/4), 2(x/2 + 3y/4) — 2(x/2 + y/4))
(z,9).

4. Let U be a subspace of a finite-dimensional vector space V.

(a) Show that there exists a linear map 7' : V' — V with null(7) = U.

Solution. Let {uy,...,u,} be abasis for U, and extend it to a basis {u1, . .., Um, Vmi1,- -, Un}
for V. We define T': V' — V to be the unique linear map such that 7'(u;) = 0

for all ¢ with 1 < ¢ < m and T(v;) = v; for all j with m+1 < j < n. (It

was shown in class that there is always a unique linear map that sends the basis

vectors to any vectors of our choosing. On arbitrary linear combinations of the

basis vectors, T" must be defined by T'(ciuy + -+ - + cpv,) = c1Tuy + -+ + ¢, Tvy,.)

Clearly U = span(uy, ..., u,) € null(T) by construction. But we also see that

range(T) = {T(cius + - -+ cyv,) | ¢ € F}
= {cmi1Vmi1+ -+ v, | ¢ € F}

= span(Vmi1, .-, Un)

since v; = Tw; for all v;. Thus dimrange(T) = n —m. By the rank-nullity
theorem,

dimnull(T) = dimV — dimrange(T) =n — (n —m) =m = dim U.

Therefore, we must have equality U = null(T).
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(b) Show that there exists a linear map S : V' — V with range(S) = U.
Solution. We keep the same notation for basis vectors as in (a). We define
S : V. — V to be the unique linear map such that S(u;) = w; for all ¢ with
1 <i<mand S(vj) =0 for all j with m+ 1 < j < n. The same argument as
above shows that range(S) = span(uy, ..., uy,) = U.

(c¢) Give examples of such S and T as above when U is the subspace R(1,1,1) of
V =R3
Solution. In the above notation, we must complete the basis {u;} for U, where
u; = (1,1,1) to a basis of V. So let vo = (0,1,0) and v3 = (0,0,1). As above,
T:V — V will be defined by T'(u;) = 0, T'(vs) = vo and T'(v3) = v3. Thus

T(x,y,z) = T(ru+(y—2)va+(z—x)vs) = (y—x)va+(2—x)vs = (0,y —2,y — ).
Meanwhile, S is defined by S(u1) = u; and S(vy) = S(v3) = 0. Thus we have

S(z,y,z) = S(xus + (y — x)vg + (2 — x)v3) = xSuy = vuy = (x, z, x).

5. (Extra Credit.) Let U be a subspace of V. Show that there exists a linear map
T:V — V with null(T) = U and range(T) = U if and only if dimU = 1 dim V.

Solution. =-: Assume null(7") = U = range(7"). By the rank-nullity theorem, we have
dim V' = dimnull(7') + dimrange(7) = 2dim U. Thus dimU = 3 dim V.

«<: Assume that dimU = %dim V. As in the solution to 4, we choose a basis
{uy, ..., un} of U and extend it to a basis {uy, ..., upn,v1,...,0,} of V. We define
T : V — V to be the unique linear map such that T'(v;) = u; and T'(u;) = 0 for all ¢ with
1 <i < m. Asin the solution to 4(a), we see that range(T) = span(uy, ..., uy) = U.
Since U C null(T) and it follows from the rank-nullity theorem that both subspaces
have dimension m, we must have U = null(T).



