
Math 108A - Take-Home Midterm Solutions
1. Are the following functions linear maps between F -vector spaces? Justify your answers.

(a) F = R and T : R2 → R2 is defined by T (x, y) = (y, x) for all x, y ∈ R.

Solution. Yes, T is a linear map. If a ∈ F and x, y ∈ R, we have T (a(x, y)) =
T (ax, ay) = (ay, ax) = a(y, x) = aT (x, y). Also, if x′, y′ ∈ R, then T ((x, y) +
(x′, y′)) = T (x+x′, y +y′) = (y +y′, x+x′) = (y, x)+(y′, x′) = T (x, y)+T (x′, y′).

(b) F = C and S : C → C2 is defined by S(x + iy) = (x + ix, y + iy) for all x, y ∈ R.

Solution. No, S is not a linear map. Notice that S(i) = S(0 + 1i) = (0, 1 + i),
and S(−1) = S(−1 + 0i) = (−1− i, 0). But −1 = i2, so if S was linear, we would
have S(−1) = S(i2) = iS(i) = i(0, 1 + i) = (0,−1 + i) 6= (−1− i, 0).

(Note: S would be a linear map if F = R instead of C.)

2. Let T : R2 → R2 be the linear map T (x, y) = (3x− y, 2y − 2x).

(a) Find Mat(T, E , E) where E = {e1, e2} is the standard basis for R2.

Solution. The columns for Mat(T, E , E) will be the coordinates of Te1 and
Te2 in the standard basis. Since Te1 = T (1, 0) = (3,−2) = 3e1 − 2e2 and
Te2 = T (0, 1) = (−1, 2) = −e1 + 2e2, the matrix for T in the standard basis will
be (

3 −1
−2 2

)
.

(b) Find Mat(T,B,B) where B is the basis {(1, 2), (−1, 1)} for R2.

Solution. The columns for Mat(T,B,B) will be the coordinates of T (1, 2) and
T (−1, 1) in the basis B. Since T (1, 2) = (1, 2) = 1(1, 2)+0(−1, 1) and T (−1, 1) =
(−4, 4) = 0(1, 2) + 4(−1, 1), the matrix for T in the basis B will be(

1 0
0 4

)
.

3. Prove that the linear map T : R2 → R2 from Problem 2 is invertible and find a formula
for its inverse.

Solution. To prove T is invertible, it suffices to find an inverse S ∈ mathcalL(R2) such
that ST = TS = IdR2 . Since Te1 = (3,−2) and Te2 = (−1, 2), the requirements that
STe1 = e1 and STe2 = e2 show that we must have S(3,−2) = (1, 0) and S(−1, 2) =
(0, 1). Since e1 = (1, 0) = 1

2
(3,−2) + 1

2
(−1, 2), we must have

Se1 =
1

2
S(3,−2) +

1

2
S(−1, 2) = (1/2, 1/2).
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Similarly, since e2 = (0, 1) = 1
4
(3,−2) + 3

4
(−1, 2), we must have

Se2 =
1

4
S(3,−2) +

3

4
S(−1, 2) = (1/4, 3/4).

Thus the matrix for S with respect to the standard basis will be(
1/2 1/4
1/2 3/4

)
,

and we have S(x, y) = (x/2+y/4, x/2+3y/4) for all x, y ∈ R. To check that S = T−1,
we check that ST (x, y) = (x, y) = TS(x, y) for all x, y ∈ R. (By results we proved in
class, it also suffices to check that Mat(S, E)Mat(T, E) = I2). We have

ST (x, y) = S(3x−y, 2y−2x) = ((3x−y)/2+(2y−2x)/4, (3x−y)/2+3(2y−2x)/4) = (x, y),

and

TS(x, y) = T (x/2 + y/4, x/2 + 3y/4)

= (3(x/2 + y/4)− (x/2 + 3y/4), 2(x/2 + 3y/4)− 2(x/2 + y/4))

= (x, y).

4. Let U be a subspace of a finite-dimensional vector space V .

(a) Show that there exists a linear map T : V → V with null(T ) = U .

Solution. Let {u1, . . . , um} be a basis for U , and extend it to a basis {u1, . . . , um, vm+1, . . . , vn}
for V . We define T : V → V to be the unique linear map such that T (ui) = 0
for all i with 1 ≤ i ≤ m and T (vj) = vj for all j with m + 1 ≤ j ≤ n. (It
was shown in class that there is always a unique linear map that sends the basis
vectors to any vectors of our choosing. On arbitrary linear combinations of the
basis vectors, T must be defined by T (c1u1 + · · ·+ cnvn) = c1Tu1 + · · ·+ cnTvn.)
Clearly U = span(u1, . . . , um) ⊆ null(T ) by construction. But we also see that

range(T ) = {T (c1u1 + · · ·+ cnvn) | ci ∈ F}
= {cm+1vm+1 + · · ·+ cnvn | ci ∈ F}
= span(vm+1, . . . , vn)

since vj = Tvj for all vj. Thus dim range(T ) = n − m. By the rank-nullity
theorem,

dim null(T ) = dim V − dim range(T ) = n− (n−m) = m = dim U.

Therefore, we must have equality U = null(T ).
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(b) Show that there exists a linear map S : V → V with range(S) = U .

Solution. We keep the same notation for basis vectors as in (a). We define
S : V → V to be the unique linear map such that S(ui) = ui for all i with
1 ≤ i ≤ m and S(vj) = 0 for all j with m + 1 ≤ j ≤ n. The same argument as
above shows that range(S) = span(u1, . . . , um) = U .

(c) Give examples of such S and T as above when U is the subspace R(1, 1, 1) of
V = R3.

Solution. In the above notation, we must complete the basis {u1} for U , where
u1 = (1, 1, 1) to a basis of V . So let v2 = (0, 1, 0) and v3 = (0, 0, 1). As above,
T : V → V will be defined by T (u1) = 0, T (v2) = v2 and T (v3) = v3. Thus

T (x, y, z) = T (xu1+(y−x)v2+(z−x)v3) = (y−x)v2+(z−x)v3 = (0, y−x, y−x).

Meanwhile, S is defined by S(u1) = u1 and S(v2) = S(v3) = 0. Thus we have

S(x, y, z) = S(xu1 + (y − x)v2 + (z − x)v3) = xSu1 = xu1 = (x, x, x).

5. (Extra Credit.) Let U be a subspace of V . Show that there exists a linear map
T : V → V with null(T ) = U and range(T ) = U if and only if dim U = 1

2
dim V .

Solution. ⇒: Assume null(T ) = U = range(T ). By the rank-nullity theorem, we have
dim V = dim null(T ) + dim range(T ) = 2 dim U . Thus dim U = 1

2
dim V .

⇐: Assume that dim U = 1
2
dim V . As in the solution to 4, we choose a basis

{u1, . . . , um} of U and extend it to a basis {u1, . . . , um, v1, . . . , vm} of V . We define
T : V → V to be the unique linear map such that T (vi) = ui and T (ui) = 0 for all i with
1 ≤ i ≤ m. As in the solution to 4(a), we see that range(T ) = span(u1, . . . , um) = U .
Since U ⊆ null(T ) and it follows from the rank-nullity theorem that both subspaces
have dimension m, we must have U = null(T ).
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