Math 108A - Midterm 1 Redux

Due: Friday, May 2, 2008

Instructions.

- This is an optional homework. Its score will count towards your first midterm only. Basically, completing this assignment will allow you to bring a nonpassing grade up to a passing grade, or a passing grade up at most 1 letter grade.
- Problems 1-3 are from the midterm. You may redo any of these problems (or just the parts you missed) on which you received no more than two-thirds the total possible score (ie., ≤ 6 on $1, \leq 7$ on $2, \leq 6$ on 3). However, they will be graded out of fewer points this time.
- Problems 4-6 are additional problems on the same material. A small number of additonal points will be added to your midterm score for each one you complete.
- As this is a continuation of your midterm, you should work independently. However, you may use the book or your notes.
- Please turn this in with your midterm.

1. Recall $\mathcal{P}(\mathbb{R})$ is the \mathbb{R}-vector space of polynomials in x with coefficients in \mathbb{R}. Which of the following are subspaces of $\mathcal{P}(\mathbb{R})$? Justify your answers.
(a) $U=\{p(x) \in \mathcal{P}(\mathbb{R}) \mid \operatorname{degree}(p)=4\}$
(b) $V=\left\{p(x) \in \mathcal{P}(\mathbb{R}) \mid \int_{0}^{1}(p(x))^{2} d x \leq 1\right\}$
(c) $W=\{p(x) \in \mathcal{P}(\mathbb{R}) \mid p(0)=p(1)\}$
2. Let $U=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x+w=y+z\right\}$.
(a) Show that U is a subspace of \mathbb{R}^{4}.
(b) Show that $\mathbb{R}^{4}=U \oplus \mathbb{R}(0,0,0,1)$.
(c) Find a basis for U. (You must justify why it is a basis.)
3. Prove that $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent if and only if $\left\{v_{1}, \ldots, v_{n-1}\right\}$ is linearly independent and $v_{n} \notin \operatorname{span}\left(v_{1}, \ldots, v_{n-1}\right)$.
4. Determine whether or not $\left\{(x, y, z) \mid 5 x^{2}-3 y^{2}+6 z^{2}=0\right\}$ is a subspace of \mathbb{R}^{3}.
5. Prove or give a counterexample: If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly dependent set of vectors, then for all i, v_{i} is a linear combination of the other vectors in the set.
6. Recall, the cartesian product of two sets A and B is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$. That is $A \times B=\{(a, b) \mid a \in A, b \in B\}$. If U and V are F-vector spaces, show that $U \times V$ is also an F-vector space. If $\operatorname{dim} U=m$ and $\operatorname{dim} V=n$, what is the dimension of $U \times V$?
