Math 108A - Midterm 1 Redux

Due: Friday, May 2, 2008

Instructions.

- This is an optional homework. Its score will count towards your first midterm only. Basically, completing this assignment will allow you to bring a nonpassing grade up to a passing grade, or a passing grade up at most 1 letter grade.
- Problems 1-3 are from the midterm. You may redo any of these problems (or just the parts you missed) on which you received no more than two-thirds the total possible score (ie., ≤ 6 on 1, ≤ 7 on 2, ≤ 6 on 3). However, they will be graded out of fewer points this time.
- Problems 4-6 are additional problems on the same material. A small number of additional points will be added to your midterm score for each one you complete.
- As this is a continuation of your midterm, you should work independently. However, you may use the book or your notes.
- Please turn this in with your midterm.
- 1. Recall $\mathcal{P}(\mathbb{R})$ is the \mathbb{R} -vector space of polynomials in x with coefficients in \mathbb{R} . Which of the following are subspaces of $\mathcal{P}(\mathbb{R})$? Justify your answers.
 - (a) $U = \{p(x) \in \mathcal{P}(\mathbb{R}) \mid degree(p) = 4\}$
 - (b) $V = \{p(x) \in \mathcal{P}(\mathbb{R}) \mid \int_0^1 (p(x))^2 dx \le 1\}$
 - (c) $W = \{ p(x) \in \mathcal{P}(\mathbb{R}) \mid p(0) = p(1) \}$
- 2. Let $U = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + w = y + z\}.$
 - (a) Show that U is a subspace of \mathbb{R}^4 .
 - (b) Show that $\mathbb{R}^4 = U \oplus \mathbb{R}(0, 0, 0, 1)$.
 - (c) Find a basis for U. (You must justify why it is a basis.)
- 3. Prove that $\{v_1, \ldots, v_n\}$ is linearly independent if and only if $\{v_1, \ldots, v_{n-1}\}$ is linearly independent and $v_n \notin span(v_1, \ldots, v_{n-1})$.
- 4. Determine whether or not $\{(x, y, z) \mid 5x^2 3y^2 + 6z^2 = 0\}$ is a subspace of \mathbb{R}^3 .
- 5. Prove or give a counterexample: If $\{v_1, \ldots, v_n\}$ is a linearly dependent set of vectors, then for all i, v_i is a linear combination of the other vectors in the set.
- 6. Recall, the cartesian product of two sets A and B is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$. That is $A \times B = \{(a, b) \mid a \in A, b \in B\}$. If U and V are F-vector spaces, show that $U \times V$ is also an F-vector space. If dim U = m and dim V = n, what is the dimension of $U \times V$?