Math 108A - Home Work \# 5

Due: May 16, 2008

1. LADR p. 60-61: Exercises 16, 24.
2. Give an example of two vector spaces V and W and two linear maps $T: V \rightarrow W$ and $S: W \rightarrow V$ such that $S T=I_{V}$ but $T S \neq I_{W}$. In your example, is either of S, T injective? Is either surjective?
3. Let $T: V \rightarrow W$ be a linear map, and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. Show that T is invertible if and only if $\left\{T v_{1}, \ldots, T v_{n}\right\}$ is a basis for W. (You can use questions from the previous homework (eg., 5 and 7 on p. 59) to shorten your argument.)
4. Let A be an $n \times n$ matrix with entries in F.
(a) Show that A is invertible if and only if its columns are linearly independent (column) vectors in F^{n}. (Since A has n columns and $n=\operatorname{dim} F^{n}$, we could also say that A is invertible if and only if its columns are a basis of F^{n}.) Hint: this is a consequence of the previous exercise.
(b) Show that A is invertible if and only if its rows are linearly independent vectors in F^{n}. (Here, it might be easier to replace " A is invertible" with " A is surjective" and note why these are equivalent.)
