Math 108A - Home Work # 4 Solutions

LADR Problems, p. 59-60:

2. Let $f(x,y) = x^3/(x^2 + y^2)$ for all $(x,y) \neq (0,0)$ and define f(0,0) = 0. Then $f(ax,ay) = a^3x^3/(a^2x^2 + a^2y^2) = af(x,y)$ for any $a \neq 0$. If a = 0, $f(ax,ay) = f(0,0) = 0 = 0 \cdot f(x,y)$. To show that $f : \mathbb{R}^2 \to \mathbb{R}$ is not linear, consider f(1,0) = 1 and f(0,1) = 0, however $f((1,0) + (0,1)) = f(1,1) = 1/2 \neq 1 + 0$.

4. We must show that V = null(T) + Fu and also that $null(T) \cap Fu = \{0\}$. First suppose, $v \in null(T) \cap Fu$. This means that v = au for some $a \in F$ and Tv = 0. Thus T(au) = T(v) = 0, which implies that aT(u) = 0. Since $T(u) \neq 0$ by assumption, we must have a = 0. Thus v = 0u = 0, and we conclude that $null(T) \cap Fu = \{0\}$.

Now let $v \in V$. To produce a vector in null(T), consider T(v) and T(u), which are two vectors in the one-dimensional vector space F. Hence T(v) and T(u) must be linearly dependent, which means that T(v) = aT(u) = T(au) for some $a \in F$. Hence T(v - au) = 0, so $v - au \in null(T)$. We now have $v = (v - au) + au \in null(T) + Fu$. This shows that V = null(T) + Fu.

5. Assume that $\{v_1, \ldots, v_n\}$ is a linearly independent set of vectors in V and $T: V \to W$ is an injective linear map. If $c_1T(v_1) + \cdots + c_nT(v_n) = 0$ for some $c_i \in F$, then by linearity of T, we have $T(c_1v_1 + \cdots + c_nv_n) = 0$. Since we assumed that T is injective, $c_1v_1 + \cdots + c_nv_n \in null(T) = \{0\}$, which means that $c_1v_1 + \cdots + c_nv_n = 0$. By linear independence of $\{v_1, \ldots, v_n\}$ we conclude that $c_i = 0$ for all i. This shows that $\{Tv_1, \ldots, Tv_n\}$ is linearly independent.

7. Assume that $span(v_1, \ldots, v_n) = V$ and $T: V \to W$ is a surjective linear map. If $w \in W$, there exists a $v \in V$ such that Tv = w. We can write $v = a_1v_1 + \cdots + a_nv_n$ since the vectors v_i span V. Now, by linearity of T, we have $w = T(v) = T(a_1v_1 + \cdots + a_nv_n) = a_1T(v_1) + \cdots + a_nT(v_n)$, which shows that w is in the span of $\{T(v_1), \ldots, T(v_n)\}$. Since w was arbitrary, we see that $span(Tv_1, \ldots, Tv_n) = W$.

9. Since $T: F^4 \to F^2$ is a linear map, by the Rank-Nullity Theorem, we know that

$$4 = \dim F^4 = \dim null(T) + \dim range(T).$$

We claim that null(T) is 2-dimensional. One easily checks that it is spanned by (5, 1, 0, 0)and (0, 0, 7, 1), and these two vectors are clearly linearly independent since neither is a scalar multiple of the other. Thus $\{(5, 1, 0, 0), (0, 0, 7, 1)\}$ is a basis for null(T) and dim null(T) =2. (In fact, it is only necessary to check that these 2 basis vectors span null(T), so that we know dim $null(T) \leq 2$.) The above equality now implies that dim range(T) = 2, and since range(T) is a subspace of F^2 , which also has dimension 2, we know that $range(T) = F^2$. Thus T is surjective.

12. First assume that there exists a surjective linear map $T: V \to W$. By the Rank-Nullity Theorem, we have

$$\dim W = \dim range(T) = \dim V - \dim null(T) \le \dim V.$$

Conversely, assume that dim $W \leq \dim V$. Let $\{v_1, \ldots, v_n\}$ be a basis for V and $\{w_1, \ldots, w_m\}$ a basis for W, where $m \leq n$. Now define $T: V \to W$ by

$$T(a_1v_1 + \dots + a_nv_n) = a_1w_1 + \dots + a_mv_m, \quad \forall \ a_1, \dots, a_n \in F.$$

One easily checks that T is linear, and it is clear that T is surjective since its range contains all linear combinations of w_1, \ldots, w_m , and these vectors span W.