Math 108A - Home Work \# 4 Solutions

LADR Problems, p. 59-60:
2. Let $f(x, y)=x^{3} /\left(x^{2}+y^{2}\right)$ for all $(x, y) \neq(0,0)$ and define $f(0,0)=0$. Then $f(a x, a y)=a^{3} x^{3} /\left(a^{2} x^{2}+a^{2} y^{2}\right)=a f(x, y)$ for any $a \neq 0$. If $a=0, f(a x, a y)=f(0,0)=$ $0=0 \cdot f(x, y)$. To show that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is not linear, consider $f(1,0)=1$ and $f(0,1)=0$, however $f((1,0)+(0,1))=f(1,1)=1 / 2 \neq 1+0$.
4. We must show that $V=\operatorname{null}(T)+F u$ and also that $\operatorname{null}(T) \cap F u=\{0\}$. First suppose, $v \in \operatorname{null}(T) \cap F u$. This means that $v=a u$ for some $a \in F$ and $T v=0$. Thus $T(a u)=T(v)=0$, which implies that $a T(u)=0$. Since $T(u) \neq 0$ by assumption, we must have $a=0$. Thus $v=0 u=0$, and we conclude that $\operatorname{null}(T) \cap F u=\{0\}$.

Now let $v \in V$. To produce a vector in $\operatorname{null}(T)$, consider $T(v)$ and $T(u)$, which are two vectors in the one-dimensional vector space F. Hence $T(v)$ and $T(u)$ must be linearly dependent, which means that $T(v)=a T(u)=T(a u)$ for some $a \in F$. Hence $T(v-a u)=0$, so $v-a u \in \operatorname{null}(T)$. We now have $v=(v-a u)+a u \in \operatorname{null}(T)+F u$. This shows that $V=\operatorname{null}(T)+F u$.
5. Assume that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set of vectors in V and $T: V \rightarrow W$ is an injective linear map. If $c_{1} T\left(v_{1}\right)+\cdots c_{n} T\left(v_{n}\right)=0$ for some $c_{i} \in F$, then by linearity of T, we have $T\left(c_{1} v_{1}+\cdots+c_{n} v_{n}\right)=0$. Since we assumed that T is injective, $c_{1} v_{1}+\cdots+c_{n} v_{n} \in$ $\operatorname{null}(T)=\{0\}$, which means that $c_{1} v_{1}+\cdots+c_{n} v_{n}=0$. By linear independence of $\left\{v_{1}, \ldots, v_{n}\right\}$ we conclude that $c_{i}=0$ for all i. This shows that $\left\{T v_{1}, \ldots, T v_{n}\right\}$ is linearly independent.
7. Assume that $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=V$ and $T: V \rightarrow W$ is a surjective linear map. If $w \in W$, there exists a $v \in V$ such that $T v=w$. We can write $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$ since the vectors v_{i} span V. Now, by linearity of T, we have $w=T(v)=T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=$ $a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)$, which shows that w is in the span of $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$. Since w was arbitrary, we see that $\operatorname{span}\left(T v_{1}, \ldots, T v_{n}\right)=W$.
9. Since $T: F^{4} \rightarrow F^{2}$ is a linear map, by the Rank-Nullity Theorem, we know that

$$
4=\operatorname{dim} F^{4}=\operatorname{dim} \operatorname{null}(T)+\operatorname{dim} \operatorname{range}(T)
$$

We claim that $\operatorname{null}(T)$ is 2-dimensional. One easily checks that it is spanned by (5, 1, 0, 0) and $(0,0,7,1)$, and these two vectors are clearly linearly independent since neither is a scalar multiple of the other. Thus $\{(5,1,0,0),(0,0,7,1)\}$ is a basis for $\operatorname{null}(T)$ and $\operatorname{dim} \operatorname{null}(T)=$ 2. (In fact, it is only necessary to check that these 2 basis vectors span null (T), so that we know $\operatorname{dim} \operatorname{null}(T) \leq 2$.) The above equality now implies that $\operatorname{dim} \operatorname{range}(T)=2$, and since
$\operatorname{range}(T)$ is a subspace of F^{2}, which also has dimension 2 , we know that $\operatorname{range}(T)=F^{2}$. Thus T is surjective.
12. First assume that there exists a surjective linear map $T: V \rightarrow W$. By the RankNullity Theorem, we have

$$
\operatorname{dim} W=\operatorname{dim} \operatorname{range}(T)=\operatorname{dim} V-\operatorname{dim} \operatorname{null}(T) \leq \operatorname{dim} V
$$

Conversely, assume that $\operatorname{dim} W \leq \operatorname{dim} V$. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V and $\left\{w_{1}, \ldots, w_{m}\right\}$ a basis for W, where $m \leq n$. Now define $T: V \rightarrow W$ by

$$
T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=a_{1} w_{1}+\cdots+a_{m} v_{m}, \quad \forall a_{1}, \ldots, a_{n} \in F
$$

One easily checks that T is linear, and it is clear that T is surjective since its range contains all linear combinations of w_{1}, \ldots, w_{m}, and these vectors span W.

