Math 108A - Home Work \# 3 Solutions

1. LADR Problems:

8. Since U is defined by 2 equations in \mathbb{R}^{5}, we can guess that U will be $5-2=3$ dimensional. So we look for 3 linearly independent vectors in U, and then prove that they in fact span U. To find simple vectors in U, notice that we can choose x_{2}, x_{4} and x_{5} freely and then $x_{1}=3 x_{2}$ and $x_{3}=7 x_{4}$ will be determined. We thus let one of these 3 numbers equal 1 and the other 2 equal 0 , to get

$$
u_{1}=(3,1,0,0,0), u_{2}=(0,0,7,1,0), u_{3}=(0,0,0,0,1) \in U .
$$

These vectors are clearly linearly independent since no two of them are nonzero in the same slot. If $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ is an arbitrary element of U with $x_{1}=3 x_{2}$ and $x_{3}=7 x_{4}$, then it is easy to see that $x=x_{2} u_{1}+x_{4} u_{2}+x_{5} u_{3} \in \operatorname{span}\left(u_{1}, u_{2}, u_{3}\right)$. Hence $\left\{u_{1}, u_{2}, u_{3}\right\}$ is a basis for U.
Of course, any set of 3 linearly independent vectors in U would also be a valid basis here.
9. True. Let $p_{0}=1, p_{1}=x$ and $p_{3}=x^{3}$. For p_{2} we cannot take x^{2} since this has degree 2 , but we can let $p_{2}=x^{3}+x^{2}$. Since $x^{2}=p_{2}-p_{3}$, it is obvious that p_{0}, \ldots, p_{3} still span $\mathcal{P}_{3}(F)$, and thus form a basis since $\mathcal{P}_{3}(F)$ has dimension 4.
12. Suppose $p_{0}, \ldots, p_{m} \in \mathcal{P}_{m}(F)$ are polynomials such that $p_{j}(2)=0$ for each j. Assume, by way of contradiction, that p_{0}, \ldots, p_{m} are linearly independent. Then, since these are $m+1$ linearly independent elements and $\mathcal{P}_{m}(F)$ has dimension $m+1$, $\left\{p_{0}, \ldots, p_{m}\right\}$ must be a basis. Hence any polynomial $p(x) \in \mathcal{P}_{m}(F)$ can be written as a linear combination $p(x)=a_{0} p_{0}(x)+\cdots+a_{m} p_{m}(x)$. But plugging in $x=2$ would then yield $p(2)=\sum_{i=0}^{m} a_{i} p_{i}(2)=0$ for any polynomial $p(x)$ of degree $\leq m$. This is a contradiction.
14. Suppose U and W are 5 -dimensional subspaces of \mathbb{R}^{9} with $U \cap W=\{0\}$. Then $\operatorname{dim} U \cap W=0$, and hence $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)=10$. Since $U+W$ must also be a subspace of \mathbb{R}^{9}, it must have dimension ≤ 9. Hence we would have $10 \leq 9$, a contradiction.
2. Let v_{1}, \ldots, v_{m} and u be vectors in a vector space V. Show that

$$
u \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right) \Leftrightarrow \operatorname{span}\left(v_{1}, \ldots, v_{m}, u\right)=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right) .
$$

Solution. \Rightarrow : Suppose $u \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$. Thus there exist scalars $c_{1}, \ldots, c_{m} \in F$ such that $u=\sum_{i=1}^{m} c_{i} v_{i}$. If $v \in \operatorname{span}\left(v_{1}, \ldots, v_{m}, u\right)$, then $v=\sum_{i=1}^{m} d_{i} v_{i}+d_{0} u$ for scalars $d_{0}, \ldots, d_{m} \in F$. Substituting the above expression for u, we get $v=\sum_{i=1}^{m}\left(d_{i}+\right.$ $\left.d_{0} c_{i}\right) v_{i} \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$. Hence $\operatorname{span}\left(v_{1}, \ldots, v_{m}, u\right) \subseteq \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$, and the
reverse inclusion is trivial since any vector that is a linear combination of v_{1}, \ldots, v_{m} can also be written as a linear combination of v_{1}, \ldots, v_{m} and u by adding on $0=0 u$.
$\Leftarrow:$ Assume $\operatorname{span}\left(v_{1}, \ldots, v_{m}, u\right)=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$, then $u \in \operatorname{span}\left(v_{1}, \ldots, v_{m}, u\right)=$ $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$.
3. (a) Prove that $\left\{v_{1}, \ldots, v_{m}\right\}$ is a linearly independent set of vectors if and only if any $u \in$ $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$ can be written uniquely as a linear combination $u=c_{1} v_{1}+\cdots+c_{m} v_{m}$ for scalars $c_{1}, \ldots, c_{m} \in F$.

Solution. \Rightarrow : Suppose $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent and let $u \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$. By definition, there exist scalars $c_{1}, \ldots, c_{m} \in F$ such that $u=\sum_{i=1}^{m} c_{i} v_{i}$. If there exists another set of scalars $d_{1}, \ldots, d_{m} \in F$ such that we also have $u=\sum_{i=1}^{n} d_{i} v_{i}$, then we can subtract the second expression for u from the first to get $0=\sum_{i=1}^{m}\left(c_{i}-d_{i}\right) v_{i}$. Since $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent, we must have $c_{i}-d_{i}=0$ for all i. Thus $c_{i}=d_{i}$ for all i, and there is only one way to write u as a linear combination of v_{1}, \ldots, v_{m}.
$\Leftarrow:$ Clearly $0 \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$ and $0=0 v_{1}+\cdots+0 v_{m}$. If this is the unique way of writing 0 as a linear combination of v_{1}, \ldots, v_{m}, then these vectors are linearly independent by definition.
(b) Prove that $\left\{v_{1}, \ldots, v_{m}\right\}$ is a linearly independent set of vectors if and only if

$$
\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=F v_{1} \oplus F v_{2} \oplus \cdots \oplus F v_{m}
$$

(Note: by definition $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=F v_{1}+F v_{2}+\cdots+F v_{m}$.)
Solution. As noted above, we always have $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)=F v_{1}+F v_{2}+\cdots+F v_{m}$. By definition, this sum is direct if and only if any vector in $F v_{1}+\cdots+F v_{m}$ can be written uniquely as a sum of one vector from each subspace. Thus the sum is direct if and only if any $u \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$ can be written as $u=a_{1} v_{1}+\cdots a_{m} v_{m}$ for unique scalars $a_{1}, \ldots, a_{m} \in F$. By (a) this happens if and only if $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent.

