
Math 108A - Home Work # 3 Solutions

1. LADR Problems:

8. Since U is defined by 2 equations in R5, we can guess that U will be 5 − 2 = 3
dimensional. So we look for 3 linearly independent vectors in U , and then prove that
they in fact span U . To find simple vectors in U , notice that we can choose x2, x4 and
x5 freely and then x1 = 3x2 and x3 = 7x4 will be determined. We thus let one of these
3 numbers equal 1 and the other 2 equal 0, to get

u1 = (3, 1, 0, 0, 0), u2 = (0, 0, 7, 1, 0), u3 = (0, 0, 0, 0, 1) ∈ U.

These vectors are clearly linearly independent since no two of them are nonzero in the
same slot. If x = (x1, x2, x3, x4, x5) is an arbitrary element of U with x1 = 3x2 and
x3 = 7x4, then it is easy to see that x = x2u1 + x4u2 + x5u3 ∈ span(u1, u2, u3). Hence
{u1, u2, u3} is a basis for U .

Of course, any set of 3 linearly independent vectors in U would also be a valid basis
here.

9. True. Let p0 = 1, p1 = x and p3 = x3. For p2 we cannot take x2 since this has
degree 2, but we can let p2 = x3 + x2. Since x2 = p2 − p3, it is obvious that p0, . . . , p3

still span P3(F ), and thus form a basis since P3(F ) has dimension 4.

12. Suppose p0, . . . , pm ∈ Pm(F ) are polynomials such that pj(2) = 0 for each j.
Assume, by way of contradiction, that p0, . . . , pm are linearly independent. Then,
since these are m + 1 linearly independent elements and Pm(F ) has dimension m + 1,
{p0, . . . , pm} must be a basis. Hence any polynomial p(x) ∈ Pm(F ) can be written as
a linear combination p(x) = a0p0(x) + · · · + ampm(x). But plugging in x = 2 would
then yield p(2) =

∑m
i=0 aipi(2) = 0 for any polynomial p(x) of degree ≤ m. This is a

contradiction.

14. Suppose U and W are 5-dimensional subspaces of R9 with U ∩W = {0}. Then
dim U ∩W = 0, and hence dim(U + W ) = dim U + dim W − dim(U ∩W ) = 10. Since
U + W must also be a subspace of R9, it must have dimension ≤ 9. Hence we would
have 10 ≤ 9, a contradiction.

2. Let v1, . . . , vm and u be vectors in a vector space V . Show that

u ∈ span(v1, . . . , vm) ⇔ span(v1, . . . , vm, u) = span(v1, . . . , vm).

Solution. ⇒: Suppose u ∈ span(v1, . . . , vm). Thus there exist scalars c1, . . . , cm ∈ F
such that u =

∑m
i=1 civi. If v ∈ span(v1, . . . , vm, u), then v =

∑m
i=1 divi + d0u for

scalars d0, . . . , dm ∈ F . Substituting the above expression for u, we get v =
∑m

i=1(di +
d0ci)vi ∈ span(v1, . . . , vm). Hence span(v1, . . . , vm, u) ⊆ span(v1, . . . , vm), and the
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reverse inclusion is trivial since any vector that is a linear combination of v1, . . . , vm

can also be written as a linear combination of v1, . . . , vm and u by adding on 0 = 0u.

⇐: Assume span(v1, . . . , vm, u) = span(v1, . . . , vm), then u ∈ span(v1, . . . , vm, u) =
span(v1, . . . , vm).

3. (a) Prove that {v1, . . . , vm} is a linearly independent set of vectors if and only if any u ∈
span(v1, . . . , vm) can be written uniquely as a linear combination u = c1v1 + · · ·+cmvm

for scalars c1, . . . , cm ∈ F .

Solution. ⇒: Suppose {v1, . . . , vm} is linearly independent and let u ∈ span(v1, . . . , vm).
By definition, there exist scalars c1, . . . , cm ∈ F such that u =

∑m
i=1 civi. If there exists

another set of scalars d1, . . . , dm ∈ F such that we also have u =
∑n

i=1 divi, then we
can subtract the second expression for u from the first to get 0 =

∑m
i=1(ci−di)vi. Since

{v1, . . . , vm} is linearly independent, we must have ci − di = 0 for all i. Thus ci = di

for all i, and there is only one way to write u as a linear combination of v1, . . . , vm.

⇐: Clearly 0 ∈ span(v1, . . . , vm) and 0 = 0v1 + · · · + 0vm. If this is the unique
way of writing 0 as a linear combination of v1, . . . , vm, then these vectors are linearly
independent by definition.

(b) Prove that {v1, . . . , vm} is a linearly independent set of vectors if and only if

span(v1, . . . , vm) = Fv1 ⊕ Fv2 ⊕ · · · ⊕ Fvm.

(Note: by definition span(v1, . . . , vm) = Fv1 + Fv2 + · · ·+ Fvm.)

Solution. As noted above, we always have span(v1, . . . , vm) = Fv1 +Fv2 + · · ·+Fvm.
By definition, this sum is direct if and only if any vector in Fv1 + · · · + Fvm can be
written uniquely as a sum of one vector from each subspace. Thus the sum is direct if
and only if any u ∈ span(v1, . . . , vm) can be written as u = a1v1 + · · · amvm for unique
scalars a1, . . . , am ∈ F . By (a) this happens if and only if {v1, . . . , vm} is linearly
independent.
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