Math 108A Practice Midterm 1 Solutions

Charles Martin

April 23, 2008

2.2 True or false:

(a) Any set containing a zero vector is linearly dependent. <u>True.</u> Let $S = \{0, v_1, \dots, v_n\}$ be a set of vectors; then

$$1 \cdot \mathbf{0} + 0 \cdot v_1 + 0 \cdot v_2 + \cdots + 0 \cdot v_n = 0$$

shows that the zero vector can be written as a nontrivial linear combination of the vectors in S.

- (b) A basis must contain 0.
 <u>False.</u> A basis must be linearly *independent*; as seen in part (a), a set containing the zero vector is not linearly independent.
- (c) Subsets of linearly dependent sets are linearly dependent.
 <u>False.</u> Take R²; then {(1,0), (2,0)} is a linearly dependent set with the linearly independent subset {(1,0)}. Alternatively, if we let S be linearly independent, S ⊂ S ∪ {0} gives another counterexample.
- (d) Subsets of linearly independent sets are linearly independent.
 <u>True.</u> Suppose that {v₁,...,v_n} is linearly independent and that {v₁,...,v_k} is a subset (so that k < n). Furthermore, suppose that

$$c_1 v_1 + c_2 v_2 + \dots + c_k v_k = 0$$

for some scalars c_1, \ldots, c_k . Then

 $c_1v_1 + c_2v_2 + \dots + c_kv_k + 0v_{k+1} + 0v_{k+2} + \dots + 0v_n = 0$

expresses the zero vector as a linear combination of $\{v_1, \ldots, v_n\}$; by the linear independence of $\{v_1, \ldots, v_n\}$, all of the scalars must be zero. In particular, $c_1 = c_2 = \cdots = c_k = 0$, which shows $\{v_1, \ldots, v_k\}$ to be linearly independent.

- (e) If α₁**v**₁ + α₂**v**₂ + ··· + α_n**v**_n = **0** then all scalars α_k are zero.
 <u>False</u>. This is true exactly if {v₁,..., v_n} is a linearly independent set; for a counterexample, see the example in part (a) above.
- 2.3 Recall that a matrix is symmetric if $A = A^t$. Write down a basis in the space of symmetric 2×2 matrices. How many elements are in the basis?

Let $S = \{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}$. We claim that S is the required basis. For any scalars a, b, c:

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix};$$

hence any symmetric matrix is a linear combination of the elements of S. That is, S spans the set of symmetric matrices.

Suppose that a linear combination of the elements in S gives the zero matrix:

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

This implies that $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$, so that a = b = c = 0. Thus S is linearly independent; this with the fact that S spans our space implies that S is a basis, as claimed. The size of our basis, and hence the dimension of the space, is three.

2.6 Is it possible that the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent, but the vectors $\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_2, \mathbf{w}_2 = \mathbf{v}_2 + \mathbf{v}_3, \mathbf{w}_3 = \mathbf{v}_3 + \mathbf{v}_1$ are linearly independent?

<u>No.</u> Suppose that $\{v_1, v_2, v_3\}$ is a linearly dependent set. Then one of them is a linear combination of the others; without loss of generality, we write $v_3 = av_1 + bv_2$ for some scalars a, b. Let's denote $V = \text{span}\{v_1, v_2\}$. Since V is spanned by a set of two vectors, dim $V \leq 2$. Notice that

$$w_1 = v_1 + v_2 \in V$$

$$w_2 = v_2 + v_3 = av_1 + (b+1)v_2 \in V$$

$$w_3 = v_3 + v_1 = (a+1)v_1 + bv_2 \in V,$$

so that $S = \{w_1, w_2, w_3\}$ is a set of three vectors in a space of dimension at most 2. By one of our theorems, S cannot possibly be linearly independent.

1.8 Prove that the intersection of a collection of subspaces is a subspace.

Let U_1, \ldots, U_n be a collection of subspaces and set $V = \bigcap_{i=1}^n U_i$. Certainly V contains **0** since **0** $\in U_i$ for each *i*, so we need only check closure of V under scalar multiplication and vector addition.

Suppose that $v \in V$ and $c \in F$. Then $v \in U_i$ for each i, and since each U_i is a subspace, $cv \in U_i$. Since cv is in each U_i , this by definition means $cv \in V$ and V is closed under scalar multiplication.

Suppose that $v, w \in V$. Then for each i, we have $v, w \in U_i$ and $v + w \in U_i$ since each U_i is a subspace. As before, this implies $v + w \in V$, so that V is closed under vector addition. All required properties hold, so V is indeed a subspace.

<u>Technical note</u>: The wording of this problem *really* means that $\cap_{i \in A} U_i$ is a subspace for any (potentially super-uncountable) collection of subspaces $\{U_i\}_{i \in A}$. But the argument is completely identical, and most people don't think to address this point in linear algebra.