Math 108A Practice Midterm 1 Solutions

Charles Martin

April 23, 2008
2.2 True or false:
(a) Any set containing a zero vector is linearly dependent. True. Let $S=\left\{0, v_{1}, \ldots, v_{n}\right\}$ be a set of vectors; then

$$
1 \cdot \mathbf{0}+0 \cdot v_{1}+0 \cdot v_{2}+\cdots 0 \cdot v_{n}=0
$$

shows that the zero vector can be written as a nontrivial linear combination of the vectors in S.
(b) A basis must contain $\mathbf{0}$.

False. A basis must be linearly independent; as seen in part (a), a set containing the zero vector is not linearly independent.
(c) Subsets of linearly dependent sets are linearly dependent.

False. Take \mathbb{R}^{2}; then $\{(1,0),(2,0)\}$ is a linearly dependent set with the linearly independent subset $\{(1,0)\}$. Alternatively, if we let S be linearly independent, $S \subset S \cup\{0\}$ gives another counterexample.
(d) Subsets of linearly independent sets are linearly independent.

True. Suppose that $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent and that $\left\{v_{1}, \ldots, v_{k}\right\}$ is a subset (so that $k<n$). Furthermore, suppose that

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=0
$$

for some scalars c_{1}, \ldots, c_{k}. Then

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}+0 v_{k+1}+0 v_{k+2}+\cdots+0 v_{n}=0
$$

expresses the zero vector as a linear combination of $\left\{v_{1}, \ldots, v_{n}\right\}$; by the linear independence of $\left\{v_{1}, \ldots, v_{n}\right\}$, all of the scalars must be zero. In particular, $c_{1}=c_{2}=\cdots=c_{k}=0$, which shows $\left\{v_{1}, \ldots, v_{k}\right\}$ to be linearly independent.
(e) If $\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}=\mathbf{0}$ then all scalars α_{k} are zero.

False. This is true exactly if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set; for a counterexample, see the example in part (a) above.
2.3 Recall that a matrix is symmetric if $A=A^{t}$. Write down a basis in the space of symmetric 2×2 matrices. How many elements are in the basis?
Let $S=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$. We claim that S is the required basis. For any scalars a, b, c :

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) ;
$$

hence any symmetric matrix is a linear combination of the elements of S. That is, S spans the set of symmetric matrices.
Suppose that a linear combination of the elements in S gives the zero matrix:

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

This implies that $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$, so that $a=b=c=0$. Thus S is linearly independent; this with the fact that S spans our space implies that S is a basis, as claimed. The size of our basis, and hence the dimension of the space, is three.
2.6 Is it possible that the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent, but the vectors $\mathbf{w}_{1}=\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{w}_{2}=\mathbf{v}_{2}+$ $\mathbf{v}_{3}, \mathbf{w}_{3}=\mathbf{v}_{3}+\mathbf{v}_{1}$ are linearly independent?
No. Suppose that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly dependent set. Then one of them is a linear combination of the others; without loss of generality, we write $v_{3}=a v_{1}+b v_{2}$ for some scalars a, b. Let's denote $V=$ $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Since V is spanned by a set of two vectors, $\operatorname{dim} V \leq 2$. Notice that

$$
\begin{aligned}
& w_{1}=v_{1}+v_{2} \in V \\
& w_{2}=v_{2}+v_{3}=a v_{1}+(b+1) v_{2} \in V \\
& w_{3}=v_{3}+v_{1}=(a+1) v_{1}+b v_{2} \in V
\end{aligned}
$$

so that $S=\left\{w_{1}, w_{2}, w_{3}\right\}$ is a set of three vectors in a space of dimension at most 2 . By one of our theorems, S cannot possibly be linearly independent.
1.8 Prove that the intersection of a collection of subspaces is a subspace.

Let U_{1}, \ldots, U_{n} be a collection of subspaces and set $V=\cap_{i=1}^{n} U_{i}$. Certainly V contains $\mathbf{0}$ since $\mathbf{0} \in U_{i}$ for each i, so we need only check closure of V under scalar multiplication and vector addition.
Suppose that $v \in V$ and $c \in F$. Then $v \in U_{i}$ for each i, and since each U_{i} is a subspace, $c v \in U_{i}$. Since $c v$ is in each U_{i}, this by definition means $c v \in V$ and V is closed under scalar multiplication.
Suppose that $v, w \in V$. Then for each i, we have $v, w \in U_{i}$ and $v+w \in U_{i}$ since each U_{i} is a subspace. As before, this implies $v+w \in V$, so that V is closed under vector addition. All required properties hold, so V is indeed a subspace.
Technical note: The wording of this problem really means that $\cap_{i \in A} U_{i}$ is a subspace for any (potentially super-uncountable) collection of subspaces $\left\{U_{i}\right\}_{i \in A}$. But the argument is completely identical, and most people don't think to address this point in linear algebra.

