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2.2 True or false:

(a) Any set containing a zero vector is linearly dependent.
True. Let S = {0, v1, . . . , vn} be a set of vectors; then

1 · 0 + 0 · v1 + 0 · v2 + · · · 0 · vn = 0

shows that the zero vector can be written as a nontrivial linear combination of the vectors in S.

(b) A basis must contain 0.
False. A basis must be linearly independent ; as seen in part (a), a set containing the zero vector is not
linearly independent.

(c) Subsets of linearly dependent sets are linearly dependent.
False. Take R2; then {(1, 0), (2, 0)} is a linearly dependent set with the linearly independent subset
{(1, 0)}. Alternatively, if we let S be linearly independent, S ⊂ S ∪{0} gives another counterexample.

(d) Subsets of linearly independent sets are linearly independent.
True. Suppose that {v1, . . . , vn} is linearly independent and that {v1, . . . , vk} is a subset (so that
k < n). Furthermore, suppose that

c1v1 + c2v2 + · · ·+ ckvk = 0

for some scalars c1, . . . , ck. Then

c1v1 + c2v2 + · · ·+ ckvk + 0vk+1 + 0vk+2 + · · ·+ 0vn = 0

expresses the zero vector as a linear combination of {v1, . . . , vn}; by the linear independence of
{v1, . . . , vn}, all of the scalars must be zero. In particular, c1 = c2 = · · · = ck = 0, which shows
{v1, . . . , vk} to be linearly independent.

(e) If α1v1 + α2v2 + · · ·+ αnvn = 0 then all scalars αk are zero.
False. This is true exactly if {v1, . . . , vn} is a linearly independent set; for a counterexample, see the
example in part (a) above.

2.3 Recall that a matrix is symmetric if A = At. Write down a basis in the space of symmetric 2× 2 matrices.
How many elements are in the basis?

Let S = {( 1 0
0 0 ) , ( 0 1

1 0 ) , ( 0 0
0 1 )}. We claim that S is the required basis. For any scalars a, b, c:(

a b
b c

)
= a

(
1 0
0 0

)
+ b

(
0 1
1 0

)
+ c

(
0 0
0 1

)
;

hence any symmetric matrix is a linear combination of the elements of S. That is, S spans the set of
symmetric matrices.

Suppose that a linear combination of the elements in S gives the zero matrix:(
0 0
0 0

)
= a

(
1 0
0 0

)
+ b

(
0 1
1 0

)
+ c

(
0 0
0 1

)
.

This implies that ( 0 0
0 0 ) =

(
a b
b c

)
, so that a = b = c = 0. Thus S is linearly independent; this with the fact

that S spans our space implies that S is a basis, as claimed. The size of our basis, and hence the dimension
of the space, is three.



2.6 Is it possible that the vectors v1,v2,v3 are linearly dependent, but the vectors w1 = v1 + v2,w2 = v2 +
v3,w3 = v3 + v1 are linearly independent?

No. Suppose that {v1, v2, v3} is a linearly dependent set. Then one of them is a linear combination of
the others; without loss of generality, we write v3 = av1 + bv2 for some scalars a, b. Let’s denote V =
span{v1, v2}. Since V is spanned by a set of two vectors, dim V ≤ 2. Notice that

w1 = v1 + v2 ∈ V

w2 = v2 + v3 = av1 + (b + 1)v2 ∈ V

w3 = v3 + v1 = (a + 1)v1 + bv2 ∈ V,

so that S = {w1, w2, w3} is a set of three vectors in a space of dimension at most 2. By one of our theorems,
S cannot possibly be linearly independent.

1.8 Prove that the intersection of a collection of subspaces is a subspace.

Let U1, . . . , Un be a collection of subspaces and set V = ∩n
i=1Ui. Certainly V contains 0 since 0 ∈ Ui for

each i, so we need only check closure of V under scalar multiplication and vector addition.

Suppose that v ∈ V and c ∈ F . Then v ∈ Ui for each i, and since each Ui is a subspace, cv ∈ Ui. Since cv
is in each Ui, this by definition means cv ∈ V and V is closed under scalar multiplication.

Suppose that v, w ∈ V . Then for each i, we have v, w ∈ Ui and v + w ∈ Ui since each Ui is a subspace. As
before, this implies v + w ∈ V , so that V is closed under vector addition. All required properties hold, so
V is indeed a subspace.

Technical note: The wording of this problem really means that ∩i∈AUi is a subspace for any (potentially
super-uncountable) collection of subspaces {Ui}i∈A. But the argument is completely identical, and most
people don’t think to address this point in linear algebra.


