Math 108A - Basis and Dimension Review
 Spring 2009

In the following, V always denotes a finite-dimensional vector space over F.

Finding a basis for a subspace. There are several ways that you can find a basis (and prove it) for a subspace U of V. The best method will depend on the information you are given in a particular problem.

1. If you know a spanning set for U, then you can remove any vector that is a linear combination of the rest to obtain a smaller spanning set. Repeat this process until the vectors in your spanning set are linearly independent (you will need to justify why they are linearly independent).
Example. Find a basis for $U=\operatorname{span}\{(1,1,0),(0,-1,2),(2,2,0),(1,0,2)\} \subseteq \mathbb{R}^{3}$.
2. If you only have a defintion of U - perhaps as the set of vectors satisfying some equations- then you can start by trying to find as many linearly independent vectors in U as possible. Now try to show that these vectors span U, i.e., that any vector in U can be written as a linear combination of them. If this is not possible, any vector in U that is not such a linear combination can be added to your set to get a larger linearly independent set.
Example. Find a basis for $U=\left\{p(x) \in \mathcal{P}_{4}(F) \mid p(1)=p(-1)=0\right\}$.
3. Knowing the dimension of U makes things easier. If you know $\operatorname{dim} U=n$, then a basis for U will consist of any n vectors in U that EITHER 1) span U OR 2) are linearly independent. Of course, you need to justify whichever of 1) or 2) you choose to use.
Example. Find a basis for $U=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2 x-y+3 z=0\right\}$, which is a 2 dimensional subspace. (That $\operatorname{dim} U=2$ follows easily from the rank-nullity theorem which we'll cover later (see below).)

Finding the dimension of a subspace. Usually the easiest way to find the dimension of a subspace U is to find a basis for U and count how many elements it contains. For instance, this is usually easier than trying to find a minimal spanning set for U, since proving that a set is linearly independent is more straightforward than proving that a smaller spanning set does not exist. But here are a couple shortcuts that make use of theorems from class.

1. Dimension of Sum formulas. If $V=U \oplus W$ for subspaces U and W, then we know that

$$
\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} W, \quad \text { or } \quad \operatorname{dim} U=\operatorname{dim} V-\operatorname{dim} W
$$

This is useful when

1) U is a subspace of a vector space V whose dimension you know (eg. $V=F^{n}$); and 2) you can find a subspace W for which
a) $U \cap W=\{0\}$;
b) $U+W=V$; and
c) you know $\operatorname{dim} W$.

Example. Let $U=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x=w, y=z\right\}$. Find $\operatorname{dim} U$ by showing that $\mathbb{R}^{4}=U \oplus W$ for $W=\operatorname{span}\left(e_{1}, e_{2}\right)$.
2. Rank-Nullity Theorem. (For future reference.) If U is expressed as a set of vectors satisfying certain linear equations, then you can view U as the kernel (or null-space) of a linear transformation $T: V \rightarrow W$. The rank-nullity theorem then says that

$$
\operatorname{dim} U=\operatorname{dim} \operatorname{ker}(T)=\operatorname{dim} V-\operatorname{dim} \operatorname{im}(T)
$$

Example. Consider U from Example 3 above. By definition $U=\operatorname{ker}(T)$ where T : $\mathbb{R}^{3} \rightarrow \mathbb{R}$ is the linear map defined by

$$
T(x, y, z)=2 x-y+3 z
$$

The image of T is clearly \mathbb{R} (since it is a nonzero subspace of \mathbb{R}). Thus

$$
\operatorname{dim} U=\operatorname{dim} \mathbb{R}^{3}-\operatorname{dim} \mathbb{R}=2
$$

