Math 108A - Midterm Review Solutions.

1. $\mathcal{P}_{3}(F)$ is the vector space of all polynomials of degree ≤ 3 and with coefficients in F.
(a) Give an example of a subspace of $\mathcal{P}_{3}(F)$ of dimension 2. Justify why its dimension is 2 , but you don't need to justify why it is a subspace.
(b) Give an example of a subset of $\mathcal{P}_{3}(F)$ that is not a subspace. Explain why it is not a subspace.
Solution. (a) $\mathcal{P}_{1}(F)=\operatorname{span}(1, x)$ is a subspace of $\mathcal{P}_{3}(F)$ of dimension 2 . The dimension is 2 because 1 and x are linearly independent polynomials that span the subspace, and hence they are a basis for this subspace.
(b) Let U be the subset of $\mathcal{P}_{3}(F)$ consisting of all polynomials of degree 3 . It is not a subspace, since it does not contain the 0 polynomial.
2. Find a basis for the subspace

$$
U=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x=y+z, y=x+w, z+w=0\right\} \subseteq \mathbb{R}^{4}
$$

Justify your answer.

Solution.

$$
\begin{aligned}
U & =\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x=y-w, z=-w\right\} \\
& =\{(y-w, y,-w, w) \mid y, w \in \mathbb{R}\} \\
& =\operatorname{span}\{(1,1,0,0),(-1,0,-1,1)\}
\end{aligned}
$$

Since the two vectors $(1,1,0,0)$ and $(-1,0,-1,1)$ are linearly independent - neither is a scalar multiple of the other - they form a basis for U.
3. (a) Show that the map $T: \mathcal{P}_{3}(F) \rightarrow \mathcal{P}_{4}(F)$ defined by $T(p(x))=(x+1) p(x)$ is a linear map.
(b) Describe $\operatorname{ker}(T)$ and $\operatorname{im}(T)$.

Solution. (a) Let $p(x), q(x) \in \mathcal{P}_{3}(F)$ and let $a \in F$. We check that

$$
T(p(x)+a q(x))=T(p(x))+a T(q(x)) .
$$

$T(p(x)+a q(x))=(x+1)(p(x)+a q(x))=(x+1) p(x)+a(x+1) q(x)=T(p(x))+a T(q(x))$.
Thus T is a linear map.
(b) $\operatorname{ker}(T)=\left\{p(x) \in \mathcal{P}_{3}(F) \mid(x+1) p(x)=0\right\}=\{0\}$ since $(x+1) p(x)=0$ implies $p(x)=0$.

$$
\begin{aligned}
\operatorname{Im}(T) & =\left\{T(p(x)) \mid p(x) \in \mathcal{P}_{3}(F)\right\} \\
& =\left\{(x+1) p(x) \mid p(x) \in \mathcal{P}_{3}(F)\right\} \\
& =\left\{q(x) \in \mathcal{P}_{4}(F) \mid q(-1)=0\right\}
\end{aligned}
$$

4. True or False (Explain your reasoning): (a) If $\left\{u_{1}, u_{2}\right\}$ is linearly independent and $\left\{v_{1}, v_{2}\right\}$ is linearly independent, then $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ is linearly independent.
(b) If $\left\{u_{1}, u_{2}\right\}$ is a spanning set of V and $\left\{v_{1}, v_{2}\right\}$ is another spanning set of V, then $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ is also a spanning set of V.
Solution. (a) False! For a counterexample, let $u_{1}=(1,0), u_{2}=(0,1)$ and $v_{1}=(2,0)$ and $v_{2}=(0,2)$.
(b) True! Since $\left\{u_{1}, u_{2}\right\}$ is a spanning set of V, any vector $v \in V$ can be written as a linear combination of u_{1} and u_{2}. Thus any vector $v \in V$ can also be written as a linear combination of u_{1} and u_{2} and v_{1} and v_{2} (for instance, the coefficients of v_{1} and v_{2} can even be 0). Here v_{1} and v_{2} can be any vectors - they do not need to form a spanning set themselves.
5. Assume that $V=U \oplus W$ for two subspaces U and W of V. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis for U and let $\left\{w_{1}, \ldots, w_{n}\right\}$ be a basis for W. Prove that $\left\{u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{n}\right\}$ is a basis for V. (Hint: what do you know about $\operatorname{dim} U \oplus W$?)
Solution. We know that $\operatorname{dim} V=\operatorname{dim} U \oplus W=\operatorname{dim} U+\operatorname{dim} W=m+n$. Thus to show that $\left\{u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{n}\right\}$ is a basis for V, it suffices to show that these vectors span V (since there are $m+n=\operatorname{dim} V$ of them). Let $v \in V$ and write $v=u+w$ for $u \in U$ and $w \in W$, which we can do since $V=U+W$. Now we can write $u=c_{1} u_{1}+\cdots+c_{m} u_{m}$ and $w=d_{1} w_{1}+\cdots+d_{n} w_{n}$ for scalars $c_{i}, d_{j} \in F$, since $\left\{u_{1}, \ldots, u_{m}\right\}$ is a basis for U and $\left\{w_{1}, \ldots, w_{n}\right\}$ is a basis for W. Finally,

$$
v=u+w=c_{1} u_{1}+\cdots+c_{m} u_{m}+d_{1} w_{1}+\cdots+d_{n} w_{n} \in \operatorname{span}\left(u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{n}\right),
$$

which shows that these $m+n$ vectors span V.
6. What is the dimension of the subspace

$$
U=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F^{n} \mid x_{1}+2 x_{2}+\cdots+n x_{n}=0\right\} \subseteq F^{n} ?
$$

(Hint: can you apply the rank-nullity theorem?)
Solution. Notice that $U=\operatorname{ker}(T)$ where $T: F^{n} \rightarrow F$ is given by matrix multiplication with the $1 \times n$ matrix ($123 \cdots n$). The image of T is a subspace of F, and clearly it is not the zero-subspace, since T is not the zero-map (for instance, $T\left(e_{1}\right)=1$ so $1 \in \operatorname{Im}(T)$.) Thus $\operatorname{Im}(T)=F$, which has dimension 1 . Now, by the rank-nullity theorem,

$$
\operatorname{dim} U=\operatorname{dim} \operatorname{ker}(T)=\operatorname{dim} F^{n}-\operatorname{dim} \operatorname{Im}(T)=\operatorname{dim} F^{n}-\operatorname{dim} F=n-1
$$

