Math 108A - Midterm Review

The Midterm Exam will cover the material in the text LADR up through page 47, AND some material from pages 53-58 (in the section Invertibility). It will consist of a couple problems similar to the quiz problems and a couple longer problems similar to the homework. You should KNOW the definitions/meanings of the following terms:

- Vector Space over F.
- Subspace (of a vector space).
- Span (of a set of vectors).
- Linear Dependence, Linear Independence (of a set of vectors).
- The Sum $U_{1}+\cdots+U_{m}$ of subspaces.
- Direct Sum Decomposition $V=U_{1} \oplus \cdots \oplus U_{m}$ of a vector space V into subspaces U_{1}, \ldots, U_{m}.
- Basis (for a vector space).
- Dimension (of a vector space).
- Linear Map $T: V \rightarrow W$.
- Injective/ One-to-One.
- Surjective/ Onto.
- Kernel/ Null Space (of a linear map).
- Image/ Range (of a linear map).
- Isomorphism, Isomorphic Vector Spaces (see p. 55).

You should be familiar with the following Theorems from the book and class: 1.9, 2.6, $2.8, \mathbf{2 . 1 0}, \mathbf{2 . 1 2}, \mathbf{2 . 1 4}, 2.15,2.16,2.17, \mathbf{2 . 1 8}, 3.1,3.2,3.3, \mathbf{3 . 4}, \mathbf{3 . 1 8}, \mathbf{3 . 2 1}$. You will not be tested on the exact statements of these theorems, but an understanding of these basic results is essential for solving the problems.

Practice Problems.

1. $\mathcal{P}_{3}(F)$ is the vector space of all polynomials of degree ≤ 3 and with coefficients in F.
(a) Give an example of a subspace of $\mathcal{P}_{3}(F)$ of dimension 2 . Justify why its dimension is 2 , but you don't need to justify why it is a subspace.
(b) Give an example of a subset of $\mathcal{P}_{3}(F)$ that is not a subspace. Explain why it is not a subspace.
2. Find a basis for the subspace

$$
U=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x=y+z, y=x+w, z+w=0\right\} \subseteq \mathbb{R}^{4}
$$

Justify your answer.
3. (a) Show that the map $T: \mathcal{P}_{3}(F) \rightarrow \mathcal{P}_{4}(F)$ defined by $T(p(x))=(x+1) p(x)$ is a linear map.
(b) Describe $\operatorname{ker}(T)$ and $\operatorname{im}(T)$.
4. True or False (Explain your reasoning): (a) If $\left\{u_{1}, u_{2}\right\}$ is linearly independent and $\left\{v_{1}, v_{2}\right\}$ is linearly independent, then $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ is linearly independent.
(b) If $\left\{u_{1}, u_{2}\right\}$ is a spanning set of V and $\left\{v_{1}, v_{2}\right\}$ is another spanning set of V, then $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ is also a spanning set of V.
5. Assume that $V=U \oplus W$ for two subspaces U and W of V. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis for U and let $\left\{w_{1}, \ldots, w_{n}\right\}$ be a basis for W. Prove that $\left\{u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{n}\right\}$ is a basis for V. (Hint: what do you know about $\operatorname{dim} U \oplus W$?)
6. What is the dimension of the subspace

$$
U=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in F^{n} \mid x_{1}+2 x_{2}+\cdots+n x_{n}=0\right\} \subseteq F^{n} ?
$$

(Hint: can you apply the rank-nullity theorem?)

