Math 108A - Home Work \# 8 Solutions
 Spring 2009

1. LADR Problems, p. 94-95:
2. If $(w, z) \in F^{2}$ is an eigenvector for T with eigenvalue $\lambda \in F$, we have $T(w, z)=$ $(z, w)=\lambda(w, z)$. This implies that $z=\lambda w$ and $w=\lambda z$. Hence $z=\lambda^{2} z$ and $w=\lambda^{2} w$, and since z and w cannot both be 0 , we have $\lambda^{2}=1$. Therefore the only possible eigenvalues of T are $\lambda=1$ and $\lambda=-1$. We check that both actually occur. For $\lambda=1$ we need to find (w, z) such that $T(w, z)=(z, w)=(w, z)$. This happens for any $z, w \in F$ such that $z=w$. Thus, (z, z) is an eigenvector with eigenvalue 1 for any nonzero $z \in F$. For $\lambda=-1$ we need to find (w, z) such that $T(w, z)=(z, w)=-(w, z)$. This happens if and only if $z=-w$. Thus $(w,-w)$ is an eigenvector with eigenvalue -1 for any nonzero $w \in F$.
3. If $T\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+\cdots+x_{n}, \ldots, x_{1}+\cdots+x_{n}\right)=\lambda\left(x_{1}, \ldots, x_{n}\right)$, then $x_{1}+\cdots+x_{n}=$ λx_{i} for every i. Adding up these n equations gives $n\left(x_{1}+\cdots+x_{n}\right)=\lambda\left(x_{1}+\cdots+x_{n}\right)$. Thus, either $\lambda=n$ or $x_{1}+\cdots+x_{n}=0$. If $\lambda=n$, we have $x_{1}+\cdots+x_{n}=n x_{i}$ for all i. In particular $n x_{i}=n x_{j}$ for all i, j, and hence $x_{i}=x_{j}$ for all i, j. Thus the eigenvectors with eigenvalue n are precisely the vectors of the form (x, x, \ldots, x) for some nonzero scalar x. Alternatively, if $x_{1}+\cdots+x_{n}=0$, then we see that $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{null}(T)$, and hence it is an eigenvector with eigenvalue 0 . The eigenvectors with eigenvalue 0 are precisely the nonzero vectors $\left(x_{1}, \ldots, x_{n}\right)$ such that $x_{1}+\cdots+x_{n}=0$.
4. Suppose $T\left(z_{1}, z_{2}, \ldots\right)=\left(z_{2}, z_{3}, \ldots\right)=\lambda\left(z_{1}, z_{2}, \ldots\right)$. This means that $z_{i+1}=\lambda z_{i}$ for all $i \geq 1$. Hence $z_{i+1}=\lambda z_{i}=\lambda^{2} z_{i-1}=\cdots=\lambda^{i} z_{1}$ for all i. Thus we see that $\left(z_{1}, \lambda z_{1}, \lambda^{2} z_{1}, \ldots\right)$ is an eigenvector with eigenvalue λ for any $z_{1} \neq 0$. In particular, every element of F occurs as an eigenvalue of T. (This is only possible in infinitedimensional vector spaces by Corollary 5.9)
5. Suppose $T v=\lambda v$ for some $v \neq 0$. Then, by definition of the inverse of T, we have $T^{-1}(\lambda v)=v$, and by linearity we have $T^{-1}(v)=v / \lambda$. This shows that $1 / \lambda$ is an eigenvalue of T^{-1}. Conversely, if λ^{-1} is an eigenvalue of T^{-1}, the same argument shows that $\left(\lambda^{-1}\right)^{-1}=\lambda$ is an eigenvalue of $\left(T^{-1}\right)^{-1}=T$.
6. Suppose that $S T(v)=\lambda v$ for some $v \neq 0$. First suppose that $\lambda \neq 0$. Then $T S T(v)=T(\lambda v)=\lambda T(v)$. Also $T(v) \neq 0$ since $S(T(v))=\lambda v \neq 0$ (This is ESSENTIAL, and it is why we need to divide the proof into 2 cases). Thus $T(v)$ is an eigenvector of $T S$ with eigenvalue λ.

Now suppose that $\lambda=0$. As above, we have $T S T(v)=\lambda T(v)=0$, so $T(v) \in \operatorname{null}(T S)$ is an eigenvector with eigenvalue 0 if $T(v) \neq 0$. However, if $T(v)=0$, then we know that T is not injective, and thus not surjective either by 3.21 . This means that $T S$ is not surjective, and hence $T S$ is not injective by 3.21 again. This means that null($T S$) contains a nonzero vector, which must be an eigenvector with eigenvalue 0 .
Altogether, we have shown that any eigenvalue of $S T$ is also an eigenvalue of $T S$. A symmetric argument, swapping the roles of T and S, shows that any eigenvalue of $T S$ is also an eigenvalue of $S T$. Thus, we conclude that $S T$ and $T S$ have the same eigenvalues.
12. Suppose $T: V \rightarrow V$ has every nonzero $v \in V$ as an eigenvector. We first show that each $v \in V$ has the same eigenvalue. If this is not the case, we can find nonzero vectors u and v such that $T(u)=\lambda_{1} u$ and $T(v)=\lambda_{2} v$ for $\lambda_{1} \neq \lambda_{2}$. Theorem 5.6 implies that u and v are linearly independent. Then $T(u+v)=\lambda_{1} u+\lambda_{2} v$, but we must also have $T(u+v)=\lambda_{3}(u+v)$ for some $\lambda_{3} \in F$, since every vector in V is an eigenvector of T. Subtracting these two equations gives $0=\left(\lambda_{1}-\lambda_{3}\right) u+\left(\lambda_{2}-\lambda_{3}\right) v$ and then the linear independence of u and v implies that $\lambda_{1}=\lambda_{2}=\lambda_{3}$, a contradiction. Thus, there is a single eigenvalue $\lambda \in F$ such that $T(v)=\lambda v$ for all $v \in V$. But this is the same as saying $T=\lambda I_{V}$.
2. As in Ex. 7, consider the matrix $(n=3)$

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

(a) Find a change of basis matrix C such that $C^{-1} A C$ is diagonal. What is this diagonal matrix?
Solution. From Ex. 7, we know that the eigenvalues of A are 3 and 0 , and $(1,1,1)$ is an eigenvector for $\lambda=3$, while $(1,-1,0)$ and $(0,1,-1)$ are linearly independent eigenvectors for $\lambda=0$. Thus C should have these eigenvectors as its columns:

$$
C=\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & -1 & 1 \\
1 & 0 & -1
\end{array}\right)
$$

The diagonal matrix $C^{-1} A C$ will have the eigenvalues of A on the diagonal, thus it is

$$
D=C^{-1} A C=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text {. }
$$

(b) Compute A^{100}.

Solution. $A^{100}=\left(C D C^{-1}\right)^{100}=C D^{100} C^{-1}$. We compute C^{-1} and multiply:

$$
\begin{aligned}
A^{100} & =\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & -1 & 1 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)^{100} \frac{1}{3}\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & -1 & -1 \\
1 & 1 & -2
\end{array}\right) \\
& =\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & -1 & 1 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{rrr}
3^{100} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 1 \\
2 & -1 & -1 \\
1 & 1 & -2
\end{array}\right) / 3 \\
& =\left(\begin{array}{rrr}
3^{99} & 3^{99} & 3^{99} \\
3^{99} & 3^{99} & 3^{99} \\
3^{99} & 3^{99} & 3^{99}
\end{array}\right) .
\end{aligned}
$$

You could also compute A^{100} by computing A^{2} first and noticing that $A^{2}=3 A$. Iterating this identity yields $A^{n}=3^{n-1} A$ for any $n \geq 1$.
3. Extra Credit: The matrix $A=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$ has the property that $A^{2}=-I$. Find all 2×2 matrices B with this property (i.e., $B^{2}=-I$). Hint: think about the eigenvalues of B.
4. Extra Credit: Suppose that an $n \times n$ matrix B is diagonalizable, with 0 and 1 as its only eigenvalues. Show that $B^{2}=B$. Is the converse true: i.e., if B is diagonalizable and $B^{2}=B$, are 0 and 1 the only possible eigenvalues of B ?
Solution. We can write $B=C D C^{-1}$ where D is diagonal with only ones and zeros on the diagonal. Then $D^{2}=D$ and $B^{2}=C D^{2} C^{-1}=C D C^{-1}=B$. For the converse, if $B^{2}=B$ and λ is an eigenvalue of B with eigenvector v, then $B v=\lambda v$, and $B^{2} v=$ $B \lambda v=\lambda^{2} v=B v=\lambda v$. Thus $\lambda^{2}=\lambda$, and this means λ is 0 or 1 . (We don't even need to assume B is diagonalizable.)

