
Math 108A - Home Work # 8 Solutions
Spring 2009

1. LADR Problems, p. 94-95:

5. If (w, z) ∈ F 2 is an eigenvector for T with eigenvalue λ ∈ F , we have T (w, z) =
(z, w) = λ(w, z). This implies that z = λw and w = λz. Hence z = λ2z and w = λ2w,
and since z and w cannot both be 0, we have λ2 = 1. Therefore the only possible
eigenvalues of T are λ = 1 and λ = −1. We check that both actually occur. For
λ = 1 we need to find (w, z) such that T (w, z) = (z, w) = (w, z). This happens for
any z, w ∈ F such that z = w. Thus, (z, z) is an eigenvector with eigenvalue 1 for any
nonzero z ∈ F . For λ = −1 we need to find (w, z) such that T (w, z) = (z, w) = −(w, z).
This happens if and only if z = −w. Thus (w,−w) is an eigenvector with eigenvalue
−1 for any nonzero w ∈ F .

7. If T (x1, . . . , xn) = (x1+· · ·+xn, . . . , x1+· · ·+xn) = λ(x1, . . . , xn), then x1+· · ·+xn =
λxi for every i. Adding up these n equations gives n(x1 + · · ·+ xn) = λ(x1 + · · ·+ xn).
Thus, either λ = n or x1 + · · ·+ xn = 0. If λ = n, we have x1 + · · ·+ xn = nxi for all i.
In particular nxi = nxj for all i, j, and hence xi = xj for all i, j. Thus the eigenvectors
with eigenvalue n are precisely the vectors of the form (x, x, . . . , x) for some nonzero
scalar x. Alternatively, if x1 + · · · + xn = 0, then we see that (x1, . . . , xn) ∈ null(T ),
and hence it is an eigenvector with eigenvalue 0. The eigenvectors with eigenvalue 0
are precisely the nonzero vectors (x1, . . . , xn) such that x1 + · · ·+ xn = 0.

8. Suppose T (z1, z2, . . .) = (z2, z3, . . .) = λ(z1, z2, . . .). This means that zi+1 = λzi

for all i ≥ 1. Hence zi+1 = λzi = λ2zi−1 = · · · = λiz1 for all i. Thus we see that
(z1, λz1, λ

2z1, . . .) is an eigenvector with eigenvalue λ for any z1 6= 0. In particular,
every element of F occurs as an eigenvalue of T . (This is only possible in infinite-
dimensional vector spaces by Corollary 5.9)

10. Suppose Tv = λv for some v 6= 0. Then, by definition of the inverse of T , we
have T−1(λv) = v, and by linearity we have T−1(v) = v/λ. This shows that 1/λ is
an eigenvalue of T−1. Conversely, if λ−1 is an eigenvalue of T−1, the same argument
shows that (λ−1)−1 = λ is an eigenvalue of (T−1)−1 = T .

11. Suppose that ST (v) = λv for some v 6= 0. First suppose that λ 6= 0. Then
TST (v) = T (λv) = λT (v). Also T (v) 6= 0 since S(T (v)) = λv 6= 0 (This is ES-
SENTIAL, and it is why we need to divide the proof into 2 cases). Thus T (v) is an
eigenvector of TS with eigenvalue λ.
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Now suppose that λ = 0. As above, we have TST (v) = λT (v) = 0, so T (v) ∈ null(TS)
is an eigenvector with eigenvalue 0 if T (v) 6= 0. However, if T (v) = 0, then we know
that T is not injective, and thus not surjective either by 3.21. This means that TS is
not surjective, and hence TS is not injective by 3.21 again. This means that null(TS)
contains a nonzero vector, which must be an eigenvector with eigenvalue 0.

Altogether, we have shown that any eigenvalue of ST is also an eigenvalue of TS. A
symmetric argument, swapping the roles of T and S, shows that any eigenvalue of
TS is also an eigenvalue of ST . Thus, we conclude that ST and TS have the same
eigenvalues.

12. Suppose T : V → V has every nonzero v ∈ V as an eigenvector. We first show that
each v ∈ V has the same eigenvalue. If this is not the case, we can find nonzero vectors
u and v such that T (u) = λ1u and T (v) = λ2v for λ1 6= λ2. Theorem 5.6 implies that
u and v are linearly independent. Then T (u + v) = λ1u + λ2v, but we must also have
T (u + v) = λ3(u + v) for some λ3 ∈ F , since every vector in V is an eigenvector of T .
Subtracting these two equations gives 0 = (λ1 − λ3)u + (λ2 − λ3)v and then the linear
independence of u and v implies that λ1 = λ2 = λ3, a contradiction. Thus, there is a
single eigenvalue λ ∈ F such that T (v) = λv for all v ∈ V . But this is the same as
saying T = λIV .

2. As in Ex. 7, consider the matrix (n = 3)

A =

 1 1 1
1 1 1
1 1 1

 .

(a) Find a change of basis matrix C such that C−1AC is diagonal. What is this
diagonal matrix?

Solution. From Ex. 7, we know that the eigenvalues of A are 3 and 0, and
(1, 1, 1) is an eigenvector for λ = 3, while (1,−1, 0) and (0, 1,−1) are linearly
independent eigenvectors for λ = 0. Thus C should have these eigenvectors as its
columns:

C =

 1 1 0
1 −1 1
1 0 −1

 .

The diagonal matrix C−1AC will have the eigenvalues of A on the diagonal, thus
it is

D = C−1AC =

 3 0 0
0 0 0
0 0 0

 .
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(b) Compute A100.

Solution. A100 = (CDC−1)100 = CD100C−1. We compute C−1 and multiply:

A100 =

 1 1 0
1 −1 1
1 0 −1

  3 0 0
0 0 0
0 0 0

100

1

3

 1 1 1
2 −1 −1
1 1 −2


=

 1 1 0
1 −1 1
1 0 −1

  3100 0 0
0 0 0
0 0 0

  1 1 1
2 −1 −1
1 1 −2

 /3

=

 399 399 399

399 399 399

399 399 399

 .

You could also compute A100 by computing A2 first and noticing that A2 = 3A.
Iterating this identity yields An = 3n−1A for any n ≥ 1.

3. Extra Credit: The matrix A =

(
0 1

−1 0

)
has the property that A2 = −I. Find all

2×2 matrices B with this property (i.e., B2 = −I). Hint: think about the eigenvalues
of B.

4. Extra Credit: Suppose that an n× n matrix B is diagonalizable, with 0 and 1 as its
only eigenvalues. Show that B2 = B. Is the converse true: i.e., if B is diagonalizable
and B2 = B, are 0 and 1 the only possible eigenvalues of B?

Solution. We can write B = CDC−1 where D is diagonal with only ones and zeros
on the diagonal. Then D2 = D and B2 = CD2C−1 = CDC−1 = B. For the converse,
if B2 = B and λ is an eigenvalue of B with eigenvector v, then Bv = λv, and B2v =
Bλv = λ2v = Bv = λv. Thus λ2 = λ, and this means λ is 0 or 1. (We don’t even need
to assume B is diagonalizable.)
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