Math 108A - Home Work # 8 $_{\rm Due: \ June \ 3, \ 2009}$

- 1. LADR, p. 94-5: Exercises
 - 5,
 - 7 (Don't try to find the characteristic polynomial. Instead, start by finding the kernel.),
 - 8 (You'll need to use the definition of Eigenvalues/Eigenvectors),
 - 10,
 - 11,
 - 12 (First, show that T can have only one Eigenvalue.).
- 2. As in Ex. 7, consider the matrix (n = 3)

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right) \,.$$

- (a) Find a change of basis matrix C such that $C^{-1}AC$ is diagonal. What is this diagonal matrix?
- (b) Compute A^{100} .
- 3. Extra Credit: The matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ has the property that $A^2 = -I$. Find all 2×2 matrices B with this property (i.e., $B^2 = -I$). Hint: think about the eigenvalues of B.
- 4. Suppose that an $n \times n$ matrix B is diagonalizable, with 0 and 1 as its only eigenvalues. Show that $B^2 = B$. Is the converse true: i.e., if B is diagonalizable and $B^2 = B$, are 0 and 1 the only possible eigenvalues of B?