Math 108A - Home Work \# 8

Due: June 3, 2009

1. LADR, p. 94-5: Exercises

- 5 ,
- 7 (Don't try to find the characteristic polynomial. Instead, start by finding the kernel.),
- 8 (You'll need to use the definition of Eigenvalues/Eigenvectors),
- 10,
- 11,
- 12 (First, show that T can have only one Eigenvalue.).

2. As in Ex. 7, consider the matrix $(n=3)$

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

(a) Find a change of basis matrix C such that $C^{-1} A C$ is diagonal. What is this diagonal matrix?
(b) Compute A^{100}.
3. Extra Credit: The matrix $A=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$ has the property that $A^{2}=-I$. Find all 2×2 matrices B with this property (i.e., $B^{2}=-I$). Hint: think about the eigenvalues of B.
4. Suppose that an $n \times n$ matrix B is diagonalizable, with 0 and 1 as its only eigenvalues. Show that $B^{2}=B$. Is the converse true: i.e., if B is diagonalizable and $B^{2}=B$, are 0 and 1 the only possible eigenvalues of B ?

