Math 108A - Home Work \# 7 Solutions

1. For the following matrices:
(a) Find the eigenvalues (over $F=\mathbb{C}$).
(b) Describe the eigenspace for each eigenvalue. (i.e., describe all the eigenvectors for each eigenvalue).
(c) Determine whether F^{2} or F^{3} has a basis consisting of eigenvectors of the matrix.
(a) and (b)

$$
A=\left(\begin{array}{rr}
1 & 1 \\
-2 & -2
\end{array}\right)
$$

Solution. The characteristic polynomial is $p(x)=(1-x)(-2-x)+2=x^{2}+x=$ $x(x+1)$. Hence the eigenvalues are $x=0,-1$. For $x=0$, the eigenvectors are just the nonzero vectors in $\operatorname{ker} A$. Since the second row of A is -2 times the first row, the kernel is defined by a single equation: it consists of all vectors (y, z) with $y+z=0$. Thus the eigenspace V_{0} for the eigenvalue 0 is

$$
V_{0}=\left\{(y, z) \in F^{2} \mid y+z=0\right\}=F(1,-1) .
$$

For $x=-1$, the eigenspace is

$$
V_{-1}=\operatorname{ker}(A+I)=\left\{(y, z) \in F^{2} \mid 2 y+z=0\right\}=F(1,-2) .
$$

$$
B=\left(\begin{array}{rr}
2 & -2 \\
2 & 2
\end{array}\right)
$$

Solution. The characteristic polynomial is $p(z)=(2-z)(2-z)+4=z^{2}-4 z+8$, which has two complex roots $z=2 \pm 2 i$, and these are the eigenvalues. For $z=2+2 i$, the eigenspace is $V_{2+2 i}=\operatorname{ker}(B-(2+2 i) I)$. We write down this matrix and convert it to RREF:

$$
B-(2+2 i) I=\left(\begin{array}{cc}
-2 i & -2 \\
2 & -2 i
\end{array}\right) \mapsto\left(\begin{array}{cc}
1 & -i \\
0 & 0
\end{array}\right) .
$$

Hence the eigenvectors are precisely those (x, y) with $x-i y=0$. Hence $V_{2+2 i}=$ $F(i, 1)$.
For $z=2-2 i$, we have

$$
B-(2-2 i) I=\left(\begin{array}{cc}
2 i & -2 \\
2 & 2 i
\end{array}\right) \mapsto\left(\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right) .
$$

Hence any (x, y) with $x+i y=0$ is an eigenvector, and $V_{2-2 i}=F(-i, 1)$.

$$
C=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Solution. Using the fact that the matrix C is upper-triangular, we easily compute its characteristic polynomial $p(t)=\operatorname{det}(C-t I)=(1-t)(2-t)(1-t)$ and thus the eigenvalues of C are $t=1,2$. For $t=1$, we convert the matrix $C-I$ to RREF to compute its kernel:

$$
C-I=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \mapsto\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence the eigenspace for $t=1$ is

$$
V_{1}=\left\{(x, y, z) \in F^{3} \mid y+z=0\right\}=\operatorname{span}\{(1,0,0),(0,1,-1)\}
$$

For $t=2$, we convert the matrix $C-2 I$ to RREF to compute its kernel:

$$
C-2 I=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Hence the eigenspace is

$$
V_{2}=\left\{(x, y, z) \in F^{3} \mid x-y=0 \text { and } z=0\right\}=F(1,1,0)
$$

(c) For A and B we found two linearly independent eigenvectors, so these form a basis for F^{2} in each case. For C we found three linearly independent eigenvectors $(1,0,0),(0,1,-1)$ and $(1,1,0)$, and these form a basis for F^{3}.
2. $\lambda=2$ is an eigenvalue of the matrix

$$
A=\left(\begin{array}{rrr}
4 & -12 & -6 \\
1 & -4 & -3 \\
-1 & 6 & 5
\end{array}\right)
$$

(a) Find a basis for the eigenspace of A for the eigenvalue $\lambda=2$.
(b) Does A have any other eigenvalues? If so, find them and find corresponding eigenvectors.

Solution.(a) We convert the matrix $A-2 I$ to RREF to compute its kernel:

$$
\begin{aligned}
A-2 I & =\left(\begin{array}{ccc}
2 & -12 & -6 \\
1 & -6 & -3 \\
-1 & 6 & 3
\end{array}\right) \mapsto\left(\begin{array}{ccc}
2 & -12 & -6 \\
1 & -6 & -3 \\
0 & 0 & 0
\end{array}\right) \\
& \mapsto\left(\begin{array}{ccc}
1 & -6 & -3 \\
1 & -6 & -3 \\
0 & 0 & 0
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1 & -6 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Hence, the eigenspace is

$$
\begin{aligned}
\operatorname{ker}(A-2 I) & =\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-6 y-3 z=0\right\} \\
& =\{(6 y+3 z, y, z) \mid y, z \in \mathbb{R}\} \\
& =\{y(6,1,0)+z(3,0,1) \mid y, z \in \mathbb{R}\} \\
& =\operatorname{span}\{(6,1,0),(3,0,1)\} .
\end{aligned}
$$

Since the two vectors $(6,1,0)$ and $(3,0,1)$ are linearly independent and they span the eigenspace, they form a basis for the eigenspace.
(b) Since $\lambda=2$ is an eigenvalue of multiplicity 2 and A is a 3×3 matrix, there should be an additional eigenvalue. You could find it by computing the characteristic polynomial of A, but here is a trickier method. First, recognize that A must be diagonalizable: any eigenvector v for the second eigenvalue will be linearly independent from the two eigenvectors we have already found as our basis for the eigenspace V_{2}. In diagonal form, the matrix will have two 2's on the diagonal and the second eigenvalue λ. Hence its determinant will be 4λ. This is the same as the determinant of A (since $\left.\operatorname{det}\left(C^{-1} A C\right)=\operatorname{det}(C)^{-1} \operatorname{det}(A) \operatorname{det}(C)=\operatorname{det}(A)\right)$, which we can easily compute to be 4. Hence $4 \lambda=4$ and $\lambda=1$. To find the corresponding eigenvectors we must compute the kernel of $A-I$:

$$
\begin{aligned}
A-I & =\left(\begin{array}{ccc}
3 & -12 & -6 \\
1 & -5 & -3 \\
-1 & 6 & 4
\end{array}\right) \mapsto\left(\begin{array}{ccc}
0 & 3 & 3 \\
1 & -5 & -3 \\
0 & 1 & 1
\end{array}\right) \\
& \mapsto\left(\begin{array}{ccc}
1 & -5 & -3 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \mapsto\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Hence the eigenvectors are precisely those vectors (x, y, z) such that $x+2 z=0$ and $y+z=0$, and the eigenspace is $F(2,1,-1)$.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by the matrix

$$
\left(\begin{array}{rr}
1 & -1 \\
2 & 2 \\
0 & 3
\end{array}\right)
$$

with respect to the standard bases. Find bases for \mathbb{R}^{2} and \mathbb{R}^{3} in which the matrix of T is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

Solution. For T to have the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

with respect to a basis $\left\{u_{1}, u_{2}\right\}$ of \mathbb{R}^{2} and a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for \mathbb{R}^{3}, means simply that $T u_{1}=v_{1}$ and $T u_{2}=v_{2}$. Hence $\left\{u_{1}, u_{2}\right\}$ can remain the standard basis, and then $v_{1}=(1,2,0)$ and $v_{2}=(-1,2,3)$ will be the columns of the given matrix for T. Since v_{1} and v_{2} are linearly independent, we can complete them to a basis. To do this we just need to find a third vector of \mathbb{R}^{3} that is not a linear combination of v_{1} and v_{2}. For instance, $v_{3}=e_{3}=(0,0,1)$ works.
4. Let A be an $m \times n$ matrix with entries in F. The different row operations that can be performed on A are

- $R 1(i, a)$: Multiply the $i^{\text {th }}$ row of A by a nonzero scalar $a \in F .(1 \leq i \leq m)$
- R2(i,j): Swap the $i^{\text {th }}$ and $j^{\text {th }}$ rows of A. $(1 \leq i, j \leq m)$
- $R 3(i, j)$: Add the $i^{\text {th }}$ row of A to the $j^{\text {th }}$ row of A. $(1 \leq i, j \leq m)$

For each row operation R listed above, exhibit an $m \times m$ matrix X such that $X A$ is the matrix obtained by applying the row operation R to A. Verify that each such X is invertible. (Hint: think about which row operation would undo R.)
Solution. Given a row operation R, assume that there is a matrix X such that $X A$ is the matrix obtained by applying the row operation R to A for any A. Then $X=X I$ is the matrix we get by performing the row operation R to the identity matrix I. Hence the matrices we get, and their inverses, are:

- $R 1(i, a): X$ is the matrix with 1's down the diagonal, except in the $i^{\text {th }}$ row where the entry is a. In other words, $X_{j k}=0$ if $j \neq k ; X_{j j}=1$ if $j \neq i$; and $X_{i} i=a$. X^{-1} corresponds to the inverse row operation, which will be $R 1(i, 1 / a)$ - dividing the $i^{\text {th }}$ row by a. Hence X^{-1} will have $1 / a$ in the $i^{\text {th }}$ row instead of a.
- $R 2(i, j): X$ is the matrix obtained from I by swapping rows i and j. Hence

$$
X_{k l}=\left\{\begin{array}{rr}
1, & k=l \neq i, j \\
1, & \{k, l\}=\{i, j\} \\
0, & \text { otherwise }
\end{array}\right.
$$

The inverse of X corresponds to the same row operation - swapping rows i and j back - and hence $X^{-1}=X$.

- $R 3(i, j): X$ is obtained by adding the $i^{\text {th }}$ row of I to the $j^{\text {th }}$ row. Thus

$$
X_{k l}=\left\{\begin{array}{lr}
1, & k=l \\
1, & k=j, l=i \\
0, & \text { otherwise }
\end{array}\right.
$$

The inverse of X corresponds to subtracting the $i^{\text {th }}$ row from the $j^{\text {th }}$ row, and thus the matrix X^{-1} will look the same as X but with -1 in the (j, i)-entry, instead of +1 .

