Math 108A - Home Work # 5 Solutions

LADR Problems, p. 59-60:

4. We must show that V = null(T) + Fu and also that $null(T) \cap Fu = \{0\}$. First suppose, $v \in null(T) \cap Fu$. This means that v = au for some $a \in F$ and Tv = 0. Thus T(au) = T(v) = 0, which implies that aT(u) = 0. Since $T(u) \neq 0$ by assumption, we must have a = 0. Thus v = 0u = 0, and we conclude that $null(T) \cap Fu = \{0\}$.

Now let $v \in V$. To produce a vector in null(T), consider T(v) and T(u), which are two vectors in the one-dimensional vector space F. Hence T(v) and T(u) must be linearly dependent, which means that T(v) = aT(u) = T(au) for some $a \in F$. Hence T(v - au) = 0, so $v - au \in null(T)$. We now have $v = (v - au) + au \in null(T) + Fu$. This shows that V = null(T) + Fu.

- 5. Assume that $\{v_1, \ldots, v_n\}$ is a linearly independent set of vectors in V and $T: V \to W$ is an injective linear map. If $c_1T(v_1) + \cdots + c_nT(v_n) = 0$ for some $c_i \in F$, then by linearity of T, we have $T(c_1v_1 + \cdots + c_nv_n) = 0$. Since we assumed that T is injective, $c_1v_1 + \cdots + c_nv_n \in null(T) = \{0\}$, which means that $c_1v_1 + \cdots + c_nv_n = 0$. By linear independence of $\{v_1, \ldots, v_n\}$ we conclude that $c_i = 0$ for all i. This shows that $\{Tv_1, \ldots, Tv_n\}$ is linearly independent.
- 7. Assume that $span(v_1, \ldots, v_n) = V$ and $T: V \to W$ is a surjective linear map. If $w \in W$, there exists a $v \in V$ such that Tv = w. We can write $v = a_1v_1 + \cdots + a_nv_n$ since the vectors v_i span V. Now, by linearity of T, we have $w = T(v) = T(a_1v_1 + \cdots + a_nv_n) = a_1T(v_1) + \cdots + a_nT(v_n)$, which shows that w is in the span of $\{T(v_1), \ldots, T(v_n)\}$. Since w was arbitrary, we see that $span(Tv_1, \ldots, Tv_n) = W$.
- 9. Since $T: F^4 \to F^2$ is a linear map, by the Rank-Nullity Theorem, we know that

$$4 = \dim F^4 = \dim null(T) + \dim range(T).$$

We claim that null(T) is 2-dimensional. One easily checks that it is spanned by (5, 1, 0, 0) and (0, 0, 7, 1), and these two vectors are clearly linearly independent since neither is a scalar multiple of the other. Thus $\{(5, 1, 0, 0), (0, 0, 7, 1)\}$ is a basis for null(T) and dim null(T) = 2. (In fact, it is only necessary to check that these 2 basis vectors span null(T), so that we know dim $null(T) \leq 2$.) The above equality now implies that dim range(T) = 2, and since range(T) is a subspace of F^2 , which also has dimension 2, we know that $range(T) = F^2$. Thus T is surjective.

10. Suppose that $T: F^5 \to F^2$ is a linear map with null space

$$\ker(T) = U = \{ \vec{x} \in F^5 \mid x_1 = 3x_2, x_3 = x_4 = x_5 \}.$$

The rank-nullity theorem tells us that $\dim U = \dim F^5 - \dim \operatorname{Im}(T) \ge 3$ since the image of T is a subspace of F^2 and hence has dimension at most 2, However,

$$U = \{(3x_2, x_2, x_3, x_3, x_3) \mid x_2, x_3 \in F\} = span\{(3, 1, 0, 0, 0), (0, 0, 1, 1, 1)\}.$$

Since the two vectors in this spanning set are clearly linearly independent, dim U = 2, a contradiction.