Math 108A - Home Work \# 5 Solutions

LADR Problems, p. 59-60:
4. We must show that $V=\operatorname{null}(T)+F u$ and also that $\operatorname{null}(T) \cap F u=\{0\}$. First suppose, $v \in \operatorname{null}(T) \cap F u$. This means that $v=a u$ for some $a \in F$ and $T v=0$. Thus $T(a u)=T(v)=0$, which implies that $a T(u)=0$. Since $T(u) \neq 0$ by assumption, we must have $a=0$. Thus $v=0 u=0$, and we conclude that $\operatorname{null}(T) \cap F u=\{0\}$.
Now let $v \in V$. To produce a vector in $\operatorname{null}(T)$, consider $T(v)$ and $T(u)$, which are two vectors in the one-dimensional vector space F. Hence $T(v)$ and $T(u)$ must be linearly dependent, which means that $T(v)=a T(u)=T(a u)$ for some $a \in F$. Hence $T(v-a u)=0$, so $v-a u \in \operatorname{null}(T)$. We now have $v=(v-a u)+a u \in \operatorname{null}(T)+F u$. This shows that $V=\operatorname{null}(T)+F u$.
5. Assume that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set of vectors in V and $T: V \rightarrow W$ is an injective linear map. If $c_{1} T\left(v_{1}\right)+\cdots c_{n} T\left(v_{n}\right)=0$ for some $c_{i} \in F$, then by linearity of T, we have $T\left(c_{1} v_{1}+\cdots+c_{n} v_{n}\right)=0$. Since we assumed that T is injective, $c_{1} v_{1}+\cdots+c_{n} v_{n} \in \operatorname{null}(T)=\{0\}$, which means that $c_{1} v_{1}+\cdots+c_{n} v_{n}=0$. By linear independence of $\left\{v_{1}, \ldots, v_{n}\right\}$ we conclude that $c_{i}=0$ for all i. This shows that $\left\{T v_{1}, \ldots, T v_{n}\right\}$ is linearly independent.
7. Assume that $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)=V$ and $T: V \rightarrow W$ is a surjective linear map. If $w \in$ W, there exists a $v \in V$ such that $T v=w$. We can write $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$ since the vectors v_{i} span V. Now, by linearity of T, we have $w=T(v)=T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=$ $a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right)$, which shows that w is in the span of $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$. Since w was arbitrary, we see that $\operatorname{span}\left(T v_{1}, \ldots, T v_{n}\right)=W$.
9. Since $T: F^{4} \rightarrow F^{2}$ is a linear map, by the Rank-Nullity Theorem, we know that

$$
4=\operatorname{dim} F^{4}=\operatorname{dim} n u l l(T)+\operatorname{dim} \operatorname{range}(T) .
$$

We claim that $\operatorname{null}(T)$ is 2 -dimensional. One easily checks that it is spanned by $(5,1,0,0)$ and $(0,0,7,1)$, and these two vectors are clearly linearly independent since neither is a scalar multiple of the other. Thus $\{(5,1,0,0),(0,0,7,1)\}$ is a basis for $\operatorname{null}(T)$ and $\operatorname{dim} \operatorname{null}(T)=2$. (In fact, it is only necessary to check that these 2 basis vectors span $\operatorname{null}(T)$, so that we know $\operatorname{dim} \operatorname{null}(T) \leq 2$.) The above equality now implies that $\operatorname{dim} \operatorname{range}(T)=2$, and since $\operatorname{range}(T)$ is a subspace of F^{2}, which also has dimension 2, we know that $\operatorname{range}(T)=F^{2}$. Thus T is surjective.
10. Suppose that $T: F^{5} \rightarrow F^{2}$ is a linear map with null space

$$
\operatorname{ker}(T)=U=\left\{\vec{x} \in F^{5} \mid x_{1}=3 x_{2}, x_{3}=x_{4}=x_{5}\right\}
$$

The rank-nullity theorem tells us that $\operatorname{dim} U=\operatorname{dim} F^{5}-\operatorname{dim} \operatorname{Im}(T) \geq 3$ since the image of T is a subspace of F^{2} and hence has dimension at most 2, However,

$$
U=\left\{\left(3 x_{2}, x_{2}, x_{3}, x_{3}, x_{3}\right) \mid x_{2}, x_{3} \in F\right\}=\operatorname{span}\{(3,1,0,0,0),(0,0,1,1,1)\}
$$

Since the two vectors in this spanning set are clearly linearly independent, $\operatorname{dim} U=2$, a contradiction.

