## Math 108A - Home Work \# 4 Solutions

1. Exercises 13, 14 on p. 36 in LADR.
2. Suppose $U$ and $W$ are subspaces of $\mathbb{R}^{8}$ with $\operatorname{dim} U=3$ and $\operatorname{dim} W=5$. If $U+W=\mathbb{R}^{8}$, then $\operatorname{dim} U+W=\operatorname{dim} \mathbb{R}^{8}=8$. Thus $\operatorname{dim}(U \cap W)=\operatorname{dim} U+\operatorname{dim} W-$ $\operatorname{dim}(U+W)=3+5-8=0$. Since $U \cap W$ is a 0 -dimensional subspace of $\mathbb{R}^{8}$, it must be $\{0\}$.
3. Suppose $U$ and $W$ are 5 -dimensional subspaces of $\mathbb{R}^{9}$ with $U \cap W=\{0\}$. Then $\operatorname{dim} U \cap W=0$, and hence $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)=10$. Since $U+W$ must also be a subspace of $\mathbb{R}^{9}$, it must have dimension $\leq 9$. Hence we would have $10 \leq 9$, a contradiction.
4. Consider the subspace $U=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x+w=y+z\right\}$ in $\mathbb{R}^{4}$.
(a) Show that $\mathbb{R}^{4}=U \oplus \mathbb{R}(0,0,0,1)$.
(b) What is $\operatorname{dim} U$ ? (Suggestion: use (a).)
(c) Find a basis for $U$, and justify why it is a basis (Part (b) is helpful).

Solution. a) We first show that $\mathbb{R}^{4}=U+\mathbb{R}(0,0,0,1)$. Let $v=(x, y, z, w) \in \mathbb{R}^{4}$. Then $v=(x, y, z, y+z-x)+(0,0,0, w-y-z+x) \in U+\mathbb{R}(0,0,0,1)$.
Next, we check that $U \cap \mathbb{R}(0,0,0,1)=\{0\}$. Suppose that $u$ belongs to the intersection. Then $u=(0,0,0, a) \in U$ for some $a \in \mathbb{R}$. Thus $0+a=0+0$, whence $a=0$. So $u=0$ is the only vector that belongs to the intersection.
b) By (a), and Theorem 2.18, we have $\operatorname{dim} \mathbb{R}^{4}=\operatorname{dim} U+\operatorname{dim} \mathbb{R}(0,0,0,1)$, and thus $\operatorname{dim} U=\operatorname{dim} \mathbb{R}^{4}-\operatorname{dim} \mathbb{R}(0,0,0,1)=4-1=3$.
c) By (b), since $\operatorname{dim} U=3$, to find a basis for $U$, it suffices to find 3 linearly independent vectors in $U$. Since the vectors in $U$ are exactly those whose coordinates satisfy the equation $w=y+z-x$, we can get 3 linearly independent elements of $U$ by setting one of $x, y, z$ equal to 1 and the other 2 equal to 0 . This produces the vectors $(1,0,0,-1),(0,1,0,1)$ and $(0,0,1,1)$ which are clearly linearly independent elements of $U$. Hence they form a basis for $U$.
3. Prove or give a counterexample: If $\left\{v_{1}, \ldots, v_{n}\right\}$ is any linearly dependent set of vectors, then for all $i, v_{i}$ is a linear combination of the other vectors in the set.
Solution. The statement is false. For a counterexample, consider the set $\{(0,0),(1,0)\}$ of vectors in $F^{2}$. It is linearly dependent since it contains the 0 -vector, but $(1,0)$ is not a linear combination of $(0,0)$.
4. Prove that $\left\{v_{1}, \ldots, v_{m}\right\}$ is a linearly independent set of vectors if and only if any $u \in$ $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$ can be written uniquely as a linear combination $u=c_{1} v_{1}+\cdots+c_{m} v_{m}$ for scalars $c_{1}, \ldots, c_{m} \in F$.
Solution. $\Rightarrow$ : Suppose $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent and let $u \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$. By definition, there exist scalars $c_{1}, \ldots, c_{m} \in F$ such that $u=\sum_{i=1}^{m} c_{i} v_{i}$. If there exists another set of scalars $d_{1}, \ldots, d_{m} \in F$ such that we also have $u=\sum_{i=1}^{n} d_{i} v_{i}$, then we can subtract the second expression for $u$ from the first to get $0=\sum_{i=1}^{m}\left(c_{i}-d_{i}\right) v_{i}$. Since $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent, we must have $c_{i}-d_{i}=0$ for all $i$. Thus $c_{i}=d_{i}$ for all $i$, and there is only one way to write $u$ as a linear combination of $v_{1}, \ldots, v_{m}$.
$\Leftarrow$ : Clearly $0 \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$ and $0=0 v_{1}+\cdots+0 v_{m}$. If this is the unique way of writing 0 as a linear combination of $v_{1}, \ldots, v_{m}$, then these vectors are linearly independent by definition.

