Math 108A - Home Work \# 4

Due: April 29, 2009

1. Exercises 13, 14 on p. 36 in LADR.
2. Consider the subspace $U=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x+w=y+z\right\}$ in \mathbb{R}^{4}.
(a) Show that $\mathbb{R}^{4}=U \oplus \mathbb{R}(0,0,0,1)$.
(b) What is $\operatorname{dim} U$? (Suggestion: use (a).)
(c) Find a basis for U, and justify why it is a basis (Part (b) is helpful).
3. Prove or give a counterexample: If $\left\{v_{1}, \ldots, v_{n}\right\}$ is any linearly dependent set of vectors, then for all i, v_{i} is a linear combination of the other vectors in the set.
4. Prove that $\left\{v_{1}, \ldots, v_{m}\right\}$ is a linearly independent set of vectors if and only if any $u \in$ $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$ can be written uniquely as a linear combination $u=c_{1} v_{1}+\cdots+c_{m} v_{m}$ for scalars $c_{1}, \ldots, c_{m} \in F$.
