# Math 108A - Home Work \# 3 Solutions <br> Spring, 2009 

1. LADR Problems, p. 35:
2. Solution. Let $v \in V$, and assume $V=\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$. Then we can write

$$
\begin{aligned}
v & =c_{1} v_{1}+\cdots+c_{n} v_{n} \\
& =c_{1}\left(v_{1}-v_{2}\right)+\left(c_{1}+c_{2}\right)\left(v_{2}-v_{3}\right)+\left(c_{1}+c_{2}+c_{3}\right)\left(v_{3}-v_{4}\right)+\cdots+\left(c_{1}+\cdots+c_{n}\right) v_{n} .
\end{aligned}
$$

2. Solution. Suppose that $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent, and suppose that

$$
c_{1}\left(v_{1}-v_{2}\right)+c_{2}\left(v_{2}-v_{3}\right)+\cdots+c_{n-1}\left(v_{n-1}-v_{n}\right)+c_{n} v_{n}=0
$$

Distibuting and combining each $v_{i}$-term gives

$$
c_{1} v_{1}+\left(c_{2}-c_{1}\right) v_{2}+\cdots+\left(c_{n}-c_{n-1}\right) v_{n-1}=0
$$

Linear independence of $\left\{v_{1}, \ldots, v_{n}\right\}$ now implies that

$$
c_{1}=c_{2}-c_{1}=\cdots=c_{n}-c_{n-1}=0
$$

Hence $c_{2}=\left(c_{2}-c_{1}\right)+c_{1}=0$ and similarly for each $k$, we have

$$
c_{k}=\left(c_{k}-c_{k-1}\right)+\left(c_{k-1}+c_{k-2}\right)+\cdots+\left(c_{2}-c_{1}\right)+c_{1}=0
$$

8. Solution. Since $U$ is defined by 2 equations in $\mathbb{R}^{5}$, we can guess that $U$ will be $5-2=3$ dimensional. So we look for 3 linearly independent vectors in $U$, and then prove that they in fact span $U$. To find simple vectors in $U$, notice that we can choose $x_{2}, x_{4}$ and $x_{5}$ freely and then $x_{1}=3 x_{2}$ and $x_{3}=7 x_{4}$ will be determined. We thus let one of these 3 numbers equal 1 and the other 2 equal 0 , to get

$$
u_{1}=(3,1,0,0,0), u_{2}=(0,0,7,1,0), u_{3}=(0,0,0,0,1) \in U
$$

These vectors are clearly linearly independent since no two of them are nonzero in the same slot. If $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ is an arbitrary element of $U$ with $x_{1}=3 x_{2}$ and $x_{3}=7 x_{4}$, then it is easy to see that $x=x_{2} u_{1}+x_{4} u_{2}+x_{5} u_{3} \in \operatorname{span}\left(u_{1}, u_{2}, u_{3}\right)$. Hence $\left\{u_{1}, u_{2}, u_{3}\right\}$ is a basis for $U$.
Of course, any set of 3 linearly independent vectors in $U$ would also be a valid basis here.
9. Solution. True. Let $p_{0}=1, p_{1}=x$ and $p_{3}=x^{3}$. For $p_{2}$ we cannot take $x^{2}$ since this has degree 2 , but we can let $p_{2}=x^{3}+x^{2}$. Since $x^{2}=p_{2}-p_{3}$, it is obvious that $p_{0}, \ldots, p_{3}$ still span $\mathcal{P}_{3}(F)$, and thus form a basis since $\mathcal{P}_{3}(F)$ has dimension 4.
2. Let $v_{1}, \ldots, v_{m}$ and $u$ be vectors in a vector space $V$. Show that

$$
u \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right) \Leftrightarrow \operatorname{span}\left(v_{1}, \ldots, v_{m}, u\right)=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)
$$

Solution. $\Rightarrow$ : Suppose $u \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$. Thus there exist scalars $c_{1}, \ldots, c_{m} \in F$ such that $u=\sum_{i=1}^{m} c_{i} v_{i}$. If $v \in \operatorname{span}\left(v_{1}, \ldots, v_{m}, u\right)$, then $v=\sum_{i=1}^{m} d_{i} v_{i}+d_{0} u$ for scalars $d_{0}, \ldots, d_{m} \in F$. Substituting the above expression for $u$, we get $v=\sum_{i=1}^{m}\left(d_{i}+\right.$ $\left.d_{0} c_{i}\right) v_{i} \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$. Hence $\operatorname{span}\left(v_{1}, \ldots, v_{m}, u\right) \subseteq \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$, and the reverse inclusion is trivial since any vector that is a linear combination of $v_{1}, \ldots, v_{m}$ can also be written as a linear combination of $v_{1}, \ldots, v_{m}$ and $u$ by adding on $0=0 u$.
$\Leftarrow:$ Assume $\operatorname{span}\left(v_{1}, \ldots, v_{m}, u\right)=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$, then $u \in \operatorname{span}\left(v_{1}, \ldots, v_{m}, u\right)=$ $\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$.
3. Suppose that $U_{1}, \ldots, U_{m}$ are subspaces of a vector space $V$ such that $V=U_{1}+\cdots+U_{m}$. Show that $V=U_{1} \oplus \cdots \oplus U_{m}$ if and only if every set $\left\{u_{1}, \ldots, u_{m}\right\}$ of nonzero vectors with $u_{i} \in U_{i}$ for all $i$ is linearly independent.
Solution. $\Rightarrow$ : Assume $V=U_{1} \oplus \cdots \oplus U_{m}$, and let $u_{1}, \ldots, u_{m}$ be nonzero vectors with $u_{i} \in U_{i}$ for all $i$. If $c_{1} u_{1}+\cdots+c_{m} u_{m}=0$, then since $c_{i} u_{i} \in U_{i}$ for all $i$, by the definition of direct sum, we must have $c_{i} u_{i}=0$ for each $i$. Since $u_{i}$ is not the 0 -vector, this forces $c_{i}=0$ for all $i$. Hence, $u_{1}, \ldots, u_{m}$ are linearly independent.
$\Leftarrow$ : Assume that any collection $\left\{u_{1}, \ldots, u_{m}\right\}$ of nonzero vectors with $u_{i} \in U_{i}$ for all $i$ is linearly independent. We are given that $V=U_{1}+\cdots+U_{m}$, so to prove that $V$ is the direct sum of these subspaces, we only need to show that $v_{1}+\cdots+v_{m}=0$ with $v_{i} \in U_{i}$ for all $i$ implies that all $v_{i}=0$. However, if some of the $v_{i}$ were not 0 , they would be linearly dependent, which would be a contradiction.

