Math 108A - Home Work \# 3
 Due: April 22, 2009

1. Exercises $1,2,8,9$ on p. 35 in LADR.
2. Let v_{1}, \ldots, v_{m} and u be vectors in a vector space V. Show that

$$
u \in \operatorname{span}\left(v_{1}, \ldots, v_{m}\right) \Leftrightarrow \operatorname{span}\left(v_{1}, \ldots, v_{m}, u\right)=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right) .
$$

3. Suppose that U_{1}, \ldots, U_{m} are subspaces of a vector space V such that $V=U_{1}+\cdots+U_{m}$. Show that $V=U_{1} \oplus \cdots \oplus U_{m}$ if and only if every set $\left\{u_{1}, \ldots, u_{m}\right\}$ of nonzero vectors with $u_{i} \in U_{i}$ for all i is linearly independent.
