
Math 108A - Home Work # 2 Solutions
Spring 2009

1. From LADR:

5: Soluton.

(a) Subspace. Closed under addition: If x1+2x2+3x3 = 0 and y1+2y2+3y3 = 0 then
(x1 +y1)+2(x2 +y2)+3(x3 +y3) = 0+0 = 0. Closed under scalar multiplication:
If x1 + 2x2 + 3x3 = 0 then ax1 + 2ax2 + 3ax3 = a(0) = 0. Additive Identity:
0 + 2 ∗ 0 + 3 ∗ 0 = 0, so the set contains the 0 vector.

(b) Not a subspace. The 0-vector is not in it since 0 + 2 ∗ 0 + 3 ∗ 0 = 0 6= 4.

(c) Not a subspace. It contains the vectors (1, 1, 0) and (0, 0, 1), but not their sum
(1, 1, 1).

(d) Subspace. Contains the 0-vector since 0 = 5 ∗ 0. Closed under addition: If
x1 = 5x3 and y1 = 5y3 then x1 + y1 = 5x3 + 5y + 3 = 5(x3 + y3). Closed under
scalar multiplication: If x1 = 5x3 then ax1 = 5ax3.

13. & 15: Solution. Both are false, as can be seen by the following counterexample.
Let V = R2 and U1 = R(1, 0), U2 = R(1, 1) and W = R(0, 1). Then R2 = U1 ⊕ W =
U2 ⊕W , but U1 6= U2.

2. In class, we saw that the set C(R) of all continuous functions f : R → R is an R-vector
space (with the 0-function 0(x) = 0 ∀x ∈ R as the 0-vector). Which of the following
subsets of C(R) are subspaces? Justify your answers.

(a) C2(R) = {f ∈ C(R) | f is twice differentiable }
Subspace. The sum of any two twice-differentiable functions is twice-differentiable
((f + g)′′ = f ′′ + g′′), and a real multiple of a twice-differentiable function is
twice-differentiable ((af)′′ = af ′′). We also know that the 0 function is twice-
differentiable.

(b) E = {f ∈ C(R) | f(0) = 1 }
Not a subspace. The 0-function is not in this set, since 0(0) = 0 6= 1.

(c) F = {f ∈ C(R) | f(1) = 0 }
Subspace. If f(1) = g(1) = 0, then (f + g)(1) = 0 + 0 = 0 and af(1) = 0, and
clearly the 0-function is in this set.

(d) G = {f ∈ C(R) | ∀x ∈ R f(x) 6= 0 }
Not a subspace. The 0-function is not in this set.
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(e) B = {f ∈ C(R) | ∃M ∈ R ∀x ∈ R |f(x)| ≤ M } (The set of all bounded continuous
functions.)

Subspace. Clearly the 0-function is in this set, as can be seen by taking M = 0.
Suppose |f(x)| ≤ M and |g(x)| ≤ N for all x. Then |f(x) + g(x)| ≤ |f(x)| +
|g(x)| ≤ M + N for all x. Also, |af(x)| = |a||f(x)| ≤ |a|M for all x.

3. Recall the definition of the intersection of a family of sets indexed by a set I: If Ai is
a set for each i ∈ I, then ⋂

i∈I

Ai = {x | x ∈ Ai∀i ∈ I }.

Suppose that V is a vector space over F , and suppose that Vi is a subspace of V for
each i ∈ I. Show that the intersection

⋂
ı∈I Vi is also a subspace of V .

Solution. Since 0 ∈ Vi for all i, we have 0 ∈
⋂

ı∈I Vi. Suppose u, v ∈
⋂

ı∈I Vi. Then,
for each i ∈ I, u, v ∈ Vi. Since Vi is a subspace u + v ∈ Vi and av ∈ Vi for any a ∈ F .
Thus av, u + v ∈

⋂
ı∈I Vi. Hence

⋂
ı∈I Vi is also a subspace of V .

4. Extra Credit: If U is any subset of a vector space V , we defined span(U) as the set
of linear combinations of elements of U , i.e.,

span(U) = {c1u1 + · · ·+ cnun | ∀i ci ∈ F, ui ∈ V },

and we showed that span(U) is a subspace of V . Show that span(U) equals the
intersection of all subspaces of V that contain the set U . (By the previous exercise,
this gives another way of seeing that span(U) is a subspace. We can also interpret this
result as saying that span(U) is the smallest subspace of V that contains U .)

Solution. Let W be the intersection of all subspaces of V that contain U . Clearly
span(U) is one such subspace, and hence W ⊆ span(U). To prove the reverse inclusion,
we show that span(U) ⊆ Wi for any subspace Wi that contains U . In fact, this is trivial
since if Wi is a subspace, it is closed under taking linear combinations of its elements;
and thus if Wi contains U then it contains all linear combinations of vectors in U . In
other words, span(U) ⊆ Wi.
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