Math 108A - Home Work \# 2 Solutions
 Spring 2009

1. From LADR:

5: Soluton.

(a) Subspace. Closed under addition: If $x_{1}+2 x_{2}+3 x_{3}=0$ and $y_{1}+2 y_{2}+3 y_{3}=0$ then $\left(x_{1}+y_{1}\right)+2\left(x_{2}+y_{2}\right)+3\left(x_{3}+y_{3}\right)=0+0=0$. Closed under scalar multiplication: If $x_{1}+2 x_{2}+3 x_{3}=0$ then $a x_{1}+2 a x_{2}+3 a x_{3}=a(0)=0$. Additive Identity: $0+2 * 0+3 * 0=0$, so the set contains the 0 vector.
(b) Not a subspace. The 0 -vector is not in it since $0+2 * 0+3 * 0=0 \neq 4$.
(c) Not a subspace. It contains the vectors $(1,1,0)$ and $(0,0,1)$, but not their sum $(1,1,1)$.
(d) Subspace. Contains the 0 -vector since $0=5 * 0$. Closed under addition: If $x_{1}=5 x_{3}$ and $y_{1}=5 y_{3}$ then $x_{1}+y_{1}=5 x_{3}+5 y+3=5\left(x_{3}+y_{3}\right)$. Closed under scalar multiplication: If $x_{1}=5 x_{3}$ then $a x_{1}=5 a x_{3}$.
13. \& 15: Solution. Both are false, as can be seen by the following counterexample. Let $V=\mathbb{R}^{2}$ and $U_{1}=\mathbb{R}(1,0), U_{2}=\mathbb{R}(1,1)$ and $W=\mathbb{R}(0,1)$. Then $\mathbb{R}^{2}=U_{1} \oplus W=$ $U_{2} \oplus W$, but $U_{1} \neq U_{2}$.
2. In class, we saw that the set $\mathcal{C}(\mathbb{R})$ of all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is an \mathbb{R}-vector space (with the 0 -function $0(x)=0 \forall x \in \mathbb{R}$ as the 0 -vector). Which of the following subsets of $\mathcal{C}(\mathbb{R})$ are subspaces? Justify your answers.
(a) $\mathcal{C}^{2}(\mathbb{R})=\{f \in \mathcal{C}(\mathbb{R}) \mid f$ is twice differentiable $\}$

Subspace. The sum of any two twice-differentiable functions is twice-differentiable $\left((f+g)^{\prime \prime}=f^{\prime \prime}+g^{\prime \prime}\right)$, and a real multiple of a twice-differentiable function is twice-differentiable $\left((a f)^{\prime \prime}=a f^{\prime \prime}\right)$. We also know that the 0 function is twicedifferentiable.
(b) $\mathcal{E}=\{f \in \mathcal{C}(\mathbb{R}) \mid f(0)=1\}$

Not a subspace. The 0 -function is not in this set, since $0(0)=0 \neq 1$.
(c) $\mathcal{F}=\{f \in \mathcal{C}(\mathbb{R}) \mid f(1)=0\}$

Subspace. If $f(1)=g(1)=0$, then $(f+g)(1)=0+0=0$ and $a f(1)=0$, and clearly the 0 -function is in this set.
(d) $\mathcal{G}=\{f \in \mathcal{C}(\mathbb{R}) \mid \forall x \in \mathbb{R} f(x) \neq 0\}$

Not a subspace. The 0 -function is not in this set.
(e) $\mathcal{B}=\{f \in \mathcal{C}(\mathbb{R})|\exists M \in \mathbb{R} \forall x \in \mathbb{R}| f(x) \mid \leq M\}$ (The set of all bounded continuous functions.)
Subspace. Clearly the 0-function is in this set, as can be seen by taking $M=0$. Suppose $|f(x)| \leq M$ and $|g(x)| \leq N$ for all x. Then $|f(x)+g(x)| \leq|f(x)|+$ $|g(x)| \leq M+N$ for all x. Also, $|a f(x)|=|a||f(x)| \leq|a| M$ for all x.
3. Recall the definition of the intersection of a family of sets indexed by a set I : If A_{i} is a set for each $i \in I$, then

$$
\bigcap_{i \in I} A_{i}=\left\{x \mid x \in A_{i} \forall i \in I\right\} .
$$

Suppose that V is a vector space over F, and suppose that V_{i} is a subspace of V for each $i \in I$. Show that the intersection $\bigcap_{1 \in I} V_{i}$ is also a subspace of V.
Solution. Since $0 \in V_{i}$ for all i, we have $0 \in \bigcap_{1 \in I} V_{i}$. Suppose $u, v \in \bigcap_{1 \in I} V_{i}$. Then, for each $i \in I, u, v \in V_{i}$. Since V_{i} is a subspace $u+v \in V_{i}$ and $a v \in V_{i}$ for any $a \in F$. Thus $a v, u+v \in \bigcap_{1 \in I} V_{i}$. Hence $\bigcap_{1 \in I} V_{i}$ is also a subspace of V.
4. Extra Credit: If U is any subset of a vector space V, we defined $\operatorname{span}(U)$ as the set of linear combinations of elements of U, i.e.,

$$
\operatorname{span}(U)=\left\{c_{1} u_{1}+\cdots+c_{n} u_{n} \mid \forall i c_{i} \in F, u_{i} \in V\right\}
$$

and we showed that $\operatorname{span}(U)$ is a subspace of V. Show that $\operatorname{span}(U)$ equals the intersection of all subspaces of V that contain the set U. (By the previous exercise, this gives another way of seeing that $\operatorname{span}(U)$ is a subspace. We can also interpret this result as saying that $\operatorname{span}(U)$ is the smallest subspace of V that contains U.)
Solution. Let W be the intersection of all subspaces of V that contain U. Clearly $\operatorname{span}(U)$ is one such subspace, and hence $W \subseteq \operatorname{span}(U)$. To prove the reverse inclusion, we show that $\operatorname{span}(U) \subseteq W_{i}$ for any subspace W_{i} that contains U. In fact, this is trivial since if W_{i} is a subspace, it is closed under taking linear combinations of its elements; and thus if W_{i} contains U then it contains all linear combinations of vectors in U. In other words, $\operatorname{span}(U) \subseteq W_{i}$.

