
Math 108A - Home Work # 1 Solutions

1. For any z ∈ C, prove that z ∈ R if and only if z = z.

Solution. Let z = a + bi ∈ C for a, b ∈ R. If z ∈ R, then b = 0 and z = a. Then
z̄ = a + 0i = a − 0i = a = z. Conversely, if z̄ = z, we have a + bi = a − bi, which
implies 2bi = 0, and hence b = 0. Thus z = a ∈ R.

2. Is the set Z of integers (with the usual operations of addition and multiplication) a
vector space? Why or why not?

Solution. No. There is no operation of scalar multiplication by either the reals or the
complex numbers on Z.

3. Consider the set V = {(x, y) ∈ R2 | x, y ≥ 0} consisting of all vectors in the first quad-
rant of R2 (considered with usual vector addition and scalar multiplication). Which
vector space axioms (as listed on p. 9) hold for V and which fail? Justify your answers.

Solution. As in the previous question, V fails to be a vector space since scalar
multiplication (by negative real numbers) is not defined on V . Of the axioms listed
on p. 9, the only one that fails to hold for V is the existence of additive inverses. For
instance, there is no vector in the first quadrant that can be added to (1, 1) to produce
the 0-vector.

4. Let P(R) denote the set of all polynomials in the variable x with real coefficients.
Show that P(R) is a vector space over R. (You should briefly justify/check each of the
axioms.)

Solution. Let p(x) =
∑k

i=0 aix
i, q(x) =

∑m
i=0 bix

i and r(x) =
∑n

i=0 cix
i be polynomi-

als with real coefficients ai, bi, ci. We may assume k = m = n by adding on extra terms
with 0-coefficients to whichever of p(x), q(x), r(x) does not have maximal degree.

Commutativity: p(x) + q(x) =
∑n

i=0(ai + bi)x
i =

∑n
i=0(bi + ai)x

i = q(x) + p(x).

Associativity: (p(x) + q(x)) + r(x) =
∑n

i=0(ai + bi + ci)x
i = p(x) + (q(x) + r(x)).

Additive identity: 0(x) = 0 for all x. Then p(x) + 0(x) = p(x).

Additive Inverse: Let −p(x) =
∑n

i=0 −aix
i. Then p(x) + −p(x) = 0(x).

Multiplicative Identity: 1 · p(x) =
∑n

i=0 1 · aix
i = p(x).

Distributive Properties: a(p(x)+q(x)) =
∑n

i=0 a(ai+bi)x
i =

∑n
i=0 aaix

i+
∑n

i=0 abix
i =

ap(x)+ aq(x); and (a+ b)p(x) =
∑n

i=0(a+ b)aix
i =

∑n
i=0 aaix

i +
∑n

i=0 baix
i = ap(x)+

bp(x).
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5. Let V be a vector space over F . In class we saw that any vector v has a unique additive
inverse, denoted −v.

(a) Using only the vector space axioms, show that for any v ∈ V , the additive inverse
of v is given by −1 · v. Mention which axiom you are using in each step of the
proof. (Thus, we now know that −v = −1 · v for any vector v ∈ V .)

Solution.

v + −1 · v = 1 · v + −1 · v (e)

= (1 +−1)v (f)

= 0v = 0

where the last equality 0v = 0 was proved in lecture. This shows that −1 · v is an
additive inverse of v. Since −v is the unique additive inverse of v, we must have
−1 · v = −v.

(b) Let V be a vector space over F . Show that −(−v) = v for any v ∈ V . Again,
mention which axioms or previously proved results you are using in each step.

Solution. By definition, −(−v) is the additive inverse of −v, which is the additive
inverse of v. We also showed in class that the additive inverse of any vector is
unique. So, since v + −v = 0, by commutativity −v + v = 0, and thus v is the
unique additive inverse of −v. Hence v = −(−v).

Alternatively, using the previous exercise, −(−v) = −1 · (−1 ·v) = (−1)2v = 1v =
v, by axioms (b) associativity of scalar product, and (e) multiplicative identity.
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