Math 108A - Home Work \# 1 Solutions

1. For any $z \in \mathbb{C}$, prove that $z \in \mathbb{R}$ if and only if $\bar{z}=z$.

Solution. Let $z=a+b i \in \mathbb{C}$ for $a, b \in \mathbb{R}$. If $z \in \mathbb{R}$, then $b=0$ and $z=a$. Then $\bar{z}=\overline{a+0 i}=a-0 i=a=z$. Conversely, if $\bar{z}=z$, we have $a+b i=a-b i$, which implies $2 b i=0$, and hence $b=0$. Thus $z=a \in \mathbb{R}$.
2. Is the set \mathbb{Z} of integers (with the usual operations of addition and multiplication) a vector space? Why or why not?
Solution. No. There is no operation of scalar multiplication by either the reals or the complex numbers on \mathbb{Z}.
3. Consider the set $V=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y \geq 0\right\}$ consisting of all vectors in the first quadrant of \mathbb{R}^{2} (considered with usual vector addition and scalar multiplication). Which vector space axioms (as listed on p. 9) hold for V and which fail? Justify your answers.

Solution. As in the previous question, V fails to be a vector space since scalar multiplication (by negative real numbers) is not defined on V. Of the axioms listed on p. 9, the only one that fails to hold for V is the existence of additive inverses. For instance, there is no vector in the first quadrant that can be added to $(1,1)$ to produce the 0 -vector.
4. Let $\mathcal{P}(\mathbb{R})$ denote the set of all polynomials in the variable x with real coefficients. Show that $\mathcal{P}(\mathbb{R})$ is a vector space over \mathbb{R}. (You should briefly justify/check each of the axioms.)
Solution. Let $p(x)=\sum_{i=0}^{k} a_{i} x^{i}, q(x)=\sum_{i=0}^{m} b_{i} x^{i}$ and $r(x)=\sum_{i=0}^{n} c_{i} x^{i}$ be polynomials with real coefficients a_{i}, b_{i}, c_{i}. We may assume $k=m=n$ by adding on extra terms with 0 -coefficients to whichever of $p(x), q(x), r(x)$ does not have maximal degree.
Commutativity: $p(x)+q(x)=\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{i}=\sum_{i=0}^{n}\left(b_{i}+a_{i}\right) x^{i}=q(x)+p(x)$.
Associativity: $(p(x)+q(x))+r(x)=\sum_{i=0}^{n}\left(a_{i}+b_{i}+c_{i}\right) x^{i}=p(x)+(q(x)+r(x))$.
Additive identity: $0(x)=0$ for all x. Then $p(x)+0(x)=p(x)$.
Additive Inverse: Let $-p(x)=\sum_{i=0}^{n}-a_{i} x^{i}$. Then $p(x)+-p(x)=0(x)$.
Multiplicative Identity: $1 \cdot p(x)=\sum_{i=0}^{n} 1 \cdot a_{i} x^{i}=p(x)$.
Distributive Properties: $a(p(x)+q(x))=\sum_{i=0}^{n} a\left(a_{i}+b_{i}\right) x^{i}=\sum_{i=0}^{n} a a_{i} x^{i}+\sum_{i=0}^{n} a b_{i} x^{i}=$ $a p(x)+a q(x)$; and $(a+b) p(x)=\sum_{i=0}^{n}(a+b) a_{i} x^{i}=\sum_{i=0}^{n} a a_{i} x^{i}+\sum_{i=0}^{n} b a_{i} x^{i}=a p(x)+$ $b p(x)$.
5. Let V be a vector space over F. In class we saw that any vector v has a unique additive inverse, denoted $-v$.
(a) Using only the vector space axioms, show that for any $v \in V$, the additive inverse of v is given by $-1 \cdot v$. Mention which axiom you are using in each step of the proof. (Thus, we now know that $-v=-1 \cdot v$ for any vector $v \in V$.)

Solution.

$$
\begin{aligned}
v+-1 \cdot v & =1 \cdot v+-1 \cdot v \\
& =(1+-1) v \\
& =0 v=0
\end{aligned}
$$

where the last equality $0 v=0$ was proved in lecture. This shows that $-1 \cdot v$ is an additive inverse of v. Since $-v$ is the unique additive inverse of v, we must have $-1 \cdot v=-v$.
(b) Let V be a vector space over F. Show that $-(-v)=v$ for any $v \in V$. Again, mention which axioms or previously proved results you are using in each step.
Solution. By definition, $-(-v)$ is the additive inverse of $-v$, which is the additive inverse of v. We also showed in class that the additive inverse of any vector is unique. So, since $v+-v=0$, by commutativity $-v+v=0$, and thus v is the unique additive inverse of $-v$. Hence $v=-(-v)$.
Alternatively, using the previous exercise, $-(-v)=-1 \cdot(-1 \cdot v)=(-1)^{2} v=1 v=$ v, by axioms (b) associativity of scalar product, and (e) multiplicative identity.

