Math 108A - Home Work # 1 Due: April 8, 2009

- 1. For any $z \in \mathbb{C}$, prove that $z \in \mathbb{R}$ if and only if $\overline{z} = z$.
- 2. Is the set \mathbb{Z} of integers (with the usual operations of addition and multiplication) a vector space? Why or why not?
- 3. Consider the set $V = \{(x, y) \in \mathbb{R}^2 \mid x, y \ge 0\}$ consisting of all vectors in the first quadrant of \mathbb{R}^2 (considered with usual vector addition and scalar multiplication). Which vector space axioms (as listed on p. 9) hold for V and which fail? Justify your answers.
- 4. Let $\mathcal{P}(\mathbb{R})$ denote the set of all polynomials in the variable x with real coefficients. Show that $\mathcal{P}(\mathbb{R})$ is a vector space over \mathbb{R} . (You should *briefly* justify/check each of the axioms.)
- 5. Let V be a vector space over F. In class we saw that any vector v has a unique additive inverse, denoted -v.
 - (a) Using only the vector space axioms, show that for any $v \in V$, the additive inverse of v is given by $-1 \cdot v$. Mention which axiom you are using in each step of the proof. (Thus, we now know that $-v = -1 \cdot v$ for any vector $v \in V$.)
 - (b) Let V be a vector space over F. Show that -(-v) = v for any $v \in V$. Again, mention which axioms or previously proved results you are using in each step.