Math 108A - Home Work \# 7

Due: May 27, 2009

1. For the following matrices:
(a) Find the eigenvalues (over $F=\mathbb{C}$).
(b) Describe the eigenspace for each eigenvalue. (i.e., describe all the eigenvectors for each eigenvalue).
(c) Determine whether F^{2} or F^{3} has a basis consisting of eigenvectors of the matrix.

$$
A=\left(\begin{array}{rr}
1 & 1 \\
-2 & -2
\end{array}\right), \quad B=\left(\begin{array}{rr}
2 & -2 \\
2 & 2
\end{array}\right), \quad C=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right) .
$$

2. $\lambda=2$ is an eigenvalue of the matrix

$$
A=\left(\begin{array}{rrr}
4 & -12 & -6 \\
1 & -4 & -3 \\
-1 & 6 & 5
\end{array}\right)
$$

(a) Find a basis for the eigenspace of A for the eigenvalue $\lambda=2$.
(b) Does A have any other eigenvalues? If so, find them and find corresponding eigenvectors.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by the matrix

$$
\left(\begin{array}{rr}
1 & -1 \\
2 & 2 \\
0 & 3
\end{array}\right)
$$

with respect to the standard bases. Find bases for \mathbb{R}^{2} and \mathbb{R}^{3} in which the matrix of T is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

4. Let A be an $m \times n$ matrix with entries in F. The different row operations that can be performed on A are

- $R 1(i, a)$: Multiply the $i^{\text {th }}$ row of A by a nonzero scalar $a \in F$. $(1 \leq i \leq m)$
- $R 2(i, j)$: Swap the $i^{\text {th }}$ and $j^{\text {th }}$ rows of A. $(1 \leq i, j \leq m)$
- $R 3(i, j)$: Add the $i^{\text {th }}$ row of A to the $j^{\text {th }}$ row of A. $(1 \leq i, j \leq m)$

For each row operation R listed above, exhibit an $m \times m$ matrix X such that $X A$ is the matrix obtained by applying the row operation R to A. Verify that each such X is invertible. (Hint: think about which row operation would undo R.)

