Math 108A - Home Work # 6 Due: May 20, 2009

- 1. Let $\mathcal{E} = \{e_1, e_2, e_3\}$ be the standard basis for F^3 , and let \mathcal{B} be the basis $\{(1, 4, 2), (2, 0, 1), (1, -1, 0)\}.$
 - (a) Find the coordinates of (9, 4, 9) in the basis \mathcal{B} .
 - (b) Find the coordinates of each of the standard basis vectors in the basis \mathcal{B} .
 - (c) Compute the change of basis matrices between \mathcal{E} and \mathcal{B} recall, these are the matrices $Mat(I, \mathcal{E}, \mathcal{B})$ and $Mat(I, \mathcal{B}, \mathcal{E})$. (One is easy, and all the work for the other is in (b).)
 - (d) Let $T: F^3 \to F^3$ be the linear map defined by

$$T(x, y, z) = (2z - x - y, 2x - y - z, 2y - x - y), \quad \forall \ x, y, z \in F.$$

Find the standard matrix for T (i.e., $Mat(T, \mathcal{E}, \mathcal{E})$) and the matrix for T relative to the basis \mathcal{B} (i.e., $Mat(T, \mathcal{B}, \mathcal{B})$.

2. Let $V = \mathcal{P}_3(F)$ and let $D = \frac{d}{dx} : V \to V$ be the differentiation map. Consider the two bases for V:

 $\mathcal{B}_1 = \{1, x, x^2, x^3\}$ and $\mathcal{B}_2 = \{1, x, x(x-1), x(x-1)(x-2)\}.$

- (a) Compute the change of basis matrices $Mat(I, \mathcal{B}_1, \mathcal{B}_2)$ and $Mat(I, \mathcal{B}_2, \mathcal{B}_1)$. Now Compute the following matrices for D:
- (b) $Mat(D; \mathcal{B}_1, \mathcal{B}_2).$
- (c) $Mat(D; \mathcal{B}_2, \mathcal{B}_1).$
- (d) $Mat(D; \mathcal{B}_2, \mathcal{B}_2).$
- 3. Let A be an $n \times n$ matrix with entries in F. Show that A is invertible if and only if its columns are linearly independent (column) vectors in F^n . (Since A has n columns and $n = \dim F^n$, this problem is equivalent to showing that A is invertible if and only if its columns are a basis of F^n .)

Hint: This is a consequence of the following result proved in class. Let $T: V \to W$ be a linear map, and let $\{v_1, \ldots, v_n\}$ be a basis for V. Then T is invertible (i.e., bijective) if and only if $\{Tv_1, \ldots, Tv_n\}$ is a basis for W.

4. LADR p. 62: Exercise 26. (Hint: Write the system as a matrix equation, and think of the matrix as a linear map $F^n \to F^n$.)