Math 108A - Home Work \# 6

Due: May 20, 2009

1. Let $\mathcal{E}=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard basis for F^{3}, and let \mathcal{B} be the basis $\{(1,4,2),(2,0,1),(1,-1,0)\}$.
(a) Find the coordinates of $(9,4,9)$ in the basis \mathcal{B}.
(b) Find the coordintates of each of the standard basis vectors in the basis \mathcal{B}.
(c) Compute the change of basis matrices between \mathcal{E} and \mathcal{B} - recall, these are the matrices $\operatorname{Mat}(I, \mathcal{E}, \mathcal{B})$ and $\operatorname{Mat}(I, \mathcal{B}, \mathcal{E})$. (One is easy, and all the work for the other is in (b).)
(d) Let $T: F^{3} \rightarrow F^{3}$ be the linear map defined by

$$
T(x, y, z)=(2 z-x-y, 2 x-y-z, 2 y-x-y), \quad \forall x, y, z \in F
$$

Find the standard matrix for T (i.e., $\operatorname{Mat}(T, \mathcal{E}, \mathcal{E}))$ and the matrix for T relative to the basis \mathcal{B} (i.e., $\operatorname{Mat}(T, \mathcal{B}, \mathcal{B})$.
2. Let $V=\mathcal{P}_{3}(F)$ and let $D=\frac{d}{d x}: V \rightarrow V$ be the differentiation map. Consider the two bases for V :

$$
\mathcal{B}_{1}=\left\{1, x, x^{2}, x^{3}\right\} \quad \text { and } \quad \mathcal{B}_{2}=\{1, x, x(x-1), x(x-1)(x-2)\}
$$

(a) Compute the change of basis matrices $\operatorname{Mat}\left(I, \mathcal{B}_{1}, \mathcal{B}_{2}\right)$ and $\operatorname{Mat}\left(I, \mathcal{B}_{2}, \mathcal{B}_{1}\right)$.

Now Compute the following matrices for D :
(b) $\operatorname{Mat}\left(D ; \mathcal{B}_{1}, \mathcal{B}_{2}\right)$.
(c) $\operatorname{Mat}\left(D ; \mathcal{B}_{2}, \mathcal{B}_{1}\right)$.
(d) $\operatorname{Mat}\left(D ; \mathcal{B}_{2}, \mathcal{B}_{2}\right)$.
3. Let A be an $n \times n$ matrix with entries in F. Show that A is invertible if and only if its columns are linearly independent (column) vectors in F^{n}. (Since A has n columns and $n=\operatorname{dim} F^{n}$, this problem is equivalent to showing that A is invertible if and only if its columns are a basis of F^{n}.)
Hint: This is a consequence of the following result proved in class. Let $T: V \rightarrow W$ be a linear map, and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. Then T is invertible (i.e., bijective) if and only if $\left\{T v_{1}, \ldots, T v_{n}\right\}$ is a basis for W.
4. LADR p. 62: Exercise 26. (Hint: Write the system as a matrix equation, and think of the matrix as a linear map $F^{n} \rightarrow F^{n}$.)

