MATH 220C: PROBLEM SHEET APRIL 3, 2018

You may find it helpful to attempt the following problems.
(1) Show that if N is large enough, then $x^{5}-N x+1$ is irreducible over \mathbf{Q}. (Hint: First (using Rouché's theorem, or some other method) show that four of the roots in \mathbf{C} are absolutely greater that 1.)
(2) If C is a distinguished class of extensions, and $N \supset L \supset K, N \supset M \supset K$ are two towers with $L / K, M / K$ in C, then prove that $M L / K$ lies in C.
(3) An extension with $[L: K]<\infty$ is said to be finite. Prove that the class of finite extensions is distinguished.
(4) Let L / K be an extension and suppose that $\alpha \in L$. If α is algebraic, let f denote the minimal polynomial of α over K.
(i) Prove that if α is algebraic, then $[K(\alpha): K]$ is equal to the degree of f. (Remark: An extension L / K in which every element of L is algebraic over K is termed algebraic: otherwise it is termed transcendental.)
(ii) Prove that a finite extension is algebraic.
(iii) Prove that if L / K is an extension, then the set of elements of L algebraic over K forms a field.
(iv) Give an example of an algebraic extension which is not finite.
(v) Prove that the class of algebraic extensions is distinguished.
(5) If α is algebraic over K, consider the endomorphism $T(\beta)=\alpha \beta$ of the K-vector space $K(\alpha)$. Show that the determinant of $x I-T$ (where $I=$ identity) is the minimal polynomial of α over K.
(6) Find a splitting field over \mathbf{Q} for each of the following polynomials, and in each case, calculate the degree over \mathbf{Q} of the field:

$$
x^{4}-5 x^{2}+6, x^{4}+5 x^{2}+6, x^{6}-1, x^{6}+1, x^{p}-1, x^{p}-q(p, q \text { primes }) .
$$

(7) Show that if K / k is an algebraic extension, and P is the set of elements of K which are purely inseparable over k, then P is a field.
(8) Show that the class of purely inseparable extensions is distinguished.
(9) (a) Let K / k be a finite extension. Show that there is an intermediate field L such that L / k is separable and K / L is purely inseparable. [Hint: Let L be the set of elements of K separable over k. Consider any $\alpha \in K$ with minimal ploynomial f over k. Let n be such that $f \in k\left[x^{p^{n}}\right]$ but $f \notin k\left[x^{p^{n+1}}\right]$. Deduce that $\alpha^{p^{n}}$ is separable over k. Conclude.]
(b) Show that the field L above is unique.
(c) Define $[K: k]_{s}=[L: k]$ and $[K: k]_{i}=[K: L]$. Show that $[-:-]_{s}$ and $[-:-]_{i}$ satisfy tower laws. [Hint: You can slog this out. Alternatively, prove that $[K: k]_{s}=$ the number of distinct k-embeddings of K in L, and conclude.]
(10) Suppose that K / k is algebraic and $\operatorname{Char}(k)=p>0$. Let $K^{p}=\left\{\alpha^{p}: \alpha \in K\right\}$.
(a) Show that K^{p} is a field.
(b) By considering the minimal polynomial of α over $K\left(\alpha^{p}\right)$, show that if K / k is separable, then $K=k\left(K^{p}\right)$.
(c) Suppose that K / k is finite and $K=k\left(K^{p}\right)$. Show that if $\alpha_{1}, \ldots, \alpha_{n}$ are k-linearly independent, then so are $\alpha_{1}^{p}, \ldots, \alpha_{n}^{p}$. [Hint: Extend to a basis and take p-th powers.].
(d) Suppose that K / k is finite and $K=k\left(K^{p}\right)$. Suppose that $\alpha \in K$ is inseparable over k, and so has minimal polynomial of the form $a_{0}+a_{1} x^{p}+\ldots+a_{r} x^{p^{r}}$. Show that $1, \alpha, \ldots, \alpha^{r}$ are dependent over k, and obtain a contradiction. Deduce that K / k is separable.
(11) Suppose that K / k is finite. Prove that K / k is simple if and only if there are only finitely many fields F intermediate between K and k. [Hints: (i) Assume that $K=$ $k(\alpha)$ and that α has minimal polynomial f over F. Show that F is generated over k by the coefficients of f. Deduce that there are only finitely many F.
(ii) Suppose that K / k is not simple. We may assume that k is infinite (why?). Show that $k(x, y) / k$ is not simple for some x, y : hence show that the fields $k(x+c y)$ as c varies in k are all distinct.]
(12) Determine the Galois groups of the following polynomials:
(a) $x^{3}-x-1$ over \mathbf{Q}.
(b) $x^{3}-10$ over \mathbf{Q}.
(c) $x^{3}-10$ over $\mathbf{Q}(\sqrt{2})$.
(d) $x^{3}-10$ over $\mathbf{Q}(\sqrt{-3})$.
(e) $x^{3}-x-1$ over $\mathbf{Q}(\sqrt{-23})$.
(f) $x^{4}-5$ over $\mathbf{Q}, \mathbf{Q}(\sqrt{5}), \mathbf{Q}(\sqrt{-5})$.
(g) $x^{4}-a$ over \mathbf{Q}, where a is any squarefree integer $\neq 0, \pm 1$.
(h) $x^{4}+2$ over $\mathbf{Q}(i)$.
(i) $\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right)$ over \mathbf{Q}.
(j) $\left(x^{2}-p_{1}\right) \ldots\left(x^{2}-p_{n}\right)$ over \mathbf{Q}, where p_{1}, \ldots, p_{n} are distinct primes.
(k) $x^{n}-t$ over $\mathbf{C}(t)$, where t is transcendental over \mathbf{C}.
(13) (a) Suppose that $[K: k]=2$, that every element of K has a square root in K, that every polynomial of odd degree in $k[x]$ has a root in k, and that $\operatorname{char}(k) \neq 2$. Prove that K is algebraically closed.
[Hint: Let f be an irreducible polynomial over k, with splitting field L over k and Galois group G, with $H=\operatorname{Gal}(L / K)$. By considering the fixed field of a Sylow 2-subgroup of G, show that $|G|=2^{n},|H|=2^{n-1}$ for some n. By further considering the fixed field of a subgroup of index 2 in H, show that if $|H|>1$, then there is an irreducible polynomial of degree 2 over K.]
(b) Prove that \mathbf{C} is algebraically closed.
(14) Let a, b, c be elements of a field k of characteristic $\neq 2$ or 3 , such that $f(X)=$ $X^{3}+a X^{2}+b X+c$ is irreducible over k, and let x_{1}, x_{2}, x_{3} be the roots of $f(X)$ in a splitting field.
(i) If $\Delta=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{1}\right)$, show that $\Delta^{2} \in k$, and obtain a formula for Δ^{2} in terms of a, b, c.
(ii) If $\omega \neq 1$ is a cube root of 1 in k, show that $\left(x_{1}+\omega x_{2}+\omega^{2} x_{3}\right)^{3}$ is in $k(\Delta)$, and obtain a formula for it in terms of a, b, c and Δ.
(15) Suppose that t is transcendental over a field K. Show that there exists a unique K-automorphism σ of $K(t)$ such that $\sigma(t)=1 /(1-t)$.

Prove that σ^{3} is equal to the identity. Find $\operatorname{Fix}(\langle\sigma\rangle)$, and show that it is a simple transcendental extension of K.

If the characteristic of K is not equal to 2 , show that there exists a unique K automorphism τ of $K(t)$ such that $\tau(t)=2 t$. Prove that $\operatorname{Fix}(<\tau\rangle)=K$ if and only if K is of characteristic zero.
(16) Suppose that k is a field of characteristic $p>0$, and that x, y are independent transcendentals over k (that is, if $f \in k[X, Y]$ and $f(x, y)=0$, then $f=0$)). Let $K=k(x, y)$ and $L=k\left(x^{p}, y^{p}\right)$. Prove that $[K: L]=p^{2}$, but that if z lies in K, then z^{p} lies in L, and so $K \neq L(z)$.

Show further that there are infinitely many fields between L and K.
(17) Comment on the following "proof" of the existence of an algebraic closure:
"Let k be a field, and S the set of all fields which are algebraic over k, ordered under inclusion. Then S is non-empty, and if T is a subset of S such that $K, L \in T$ implies that $K \subset L$ or $L \subset K$, then $\cup_{H \in T} H$ is an element of S and an upper bound for T. Hence, by Zorn's Lemma, there is a maximal element $M \in S$. If M is not algebraically closed, then we can construct an algebraic extension of M, and this contradicts the maximality of M. Hence M is an algebraic closure of k."
[Hint: It IS wrong!]
(18) Let G be a (possibly infinite) group, let K be a normal subgroup of finite index in G, and let t_{1}, \ldots, t_{r} be representatives of the cosets of K in G. Suppose that V is a finite dimensional, completely reducible $\mathbf{C} G$-module. Show that:
(a) If U is a $\mathbf{C} K$-submodule of V, and $g \in G$, then $U g=\{u g \mid u \in U\}$ is a $\mathrm{C} K$-submodule of V.
(b) If U is a $\mathbf{C} K$-submodule of V, then $\sum_{1}^{r} U t_{i}$ is a $\mathbf{C} G$-submodule of V.
(c) V is completely reducible when regarded as a $\mathbf{C} K$-module.
(19) A (not necessarily finite) group G has a (normal) subgroup H of index 2 , and t is an element of G but not H. A $\mathbf{C} G$-space V is given. Show that if ϕ is a $\mathbf{C} H$ endomorphism of V, then the map $\phi^{t}: V \rightarrow V$ given by $\phi^{t}(v)=t^{-1} \phi(t v)(v \in V)$ is also a $\mathbf{C H}$-endomorphism.

By considering (1/2) $\left(\phi+\phi^{t}\right)$ for suitably chosen ϕ, prove that if V is completely reducible as a $\mathbf{C H}$-space, it is also completely reducible as a $\mathbf{C} G$-space.
(20) (i) A representation of a group G is said to be faithful if it has trivial kernel. Show that a finite group which has a faithful irreducible complex representation must have a cyclic centre. [Hint: Schur's lemma.]
(ii) A group G of order 18 has a non-cyclic abelian subgroup A of order 9 , and an element x of order 2 such that $x^{-1} a x=a^{-1}$ for all $a \in A$. By considering the action of A on an irreducible $\mathbf{C} G$-module, prove that G has no faithful irreducible complex representation.
(21) (i) Let p be a prime number, and let G be a finite p-group with cyclic centre Z. Suppose that ρ is a faithful representation over \mathbf{C} of G. Prove that some irreducible component of ρ is faithful. [Hint: You may find it helpful to use the facts that, since G is a p-group, Z is non-trivial, and any non-trivial normal subgroup of G intersects G non-trivially.]
(ii) Deduce that a finite p-group has a faithful irreducible representation over \mathbf{C} if, and only if, its centre is cyclic.
(22) (a) Suppose that y is an element of order 3 in a finite group G, and that y is conjugate to y^{-1}. Show that if χ is any \mathbf{C}-valued character of G, then $\chi(y)$ is a rational integer, and $\chi(y) \equiv \chi(1)$ modulo 3 .
(b) Suppose further that $1, y, y^{-1}$ are the only elements of G which commute with y. Show that G has precisely 3 irreducible complex-valued characters of degree coprime to 3 .
(23) (a) Let G be a finite group. Suppose that y is an element of G of order 4 which is conjugate to its inverse in G. Prove that if χ is a character of G, then $\chi(y)$ is an integer, and $\chi(y) \equiv \chi(1)$ modulo 2 .
(b) Prove that if $1, y, y^{2}$, and y^{3} are the only elements of G which commute with y, then G has precisely 4 irreducible characters of odd degree. [Hint: Orthogonality relations for the character table.]
(24) A group of order 720 has 11 conjugacy classes. Two representations of the group are known, and have corresponding characters α and β. The table below gives the sizes
of the classes and the values which α and β take on them:

	1	15	40	90	45	120	144	120	90	15	40
α	6	2	0	0	2	2	1	1	0	-2	3
β	21	1	-3	-1	1	1	1	0	-1	-3	0

Prove that the group has an irreducible representation of degree 16, and write down the values that the corresponding character has on the classes.

