
MATH 220C: PROBLEM SHEET
APRIL 3, 2018

You may find it helpful to attempt the following problems.

(1) Show that if N is large enough, then x5 −Nx + 1 is irreducible over Q. (Hint: First

(using Rouché’s theorem, or some other method) show that four of the roots in C

are absolutely greater that 1.)

(2) If C is a distinguished class of extensions, and N ⊃ L ⊃ K, N ⊃ M ⊃ K are two

towers with L/K, M/K in C, then prove that ML/K lies in C.

(3) An extension with [L : K] < ∞ is said to be finite. Prove that the class of finite

extensions is distinguished.

(4) Let L/K be an extension and suppose that α ∈ L. If α is algebraic, let f denote the

minimal polynomial of α over K.

(i) Prove that if α is algebraic, then [K(α) : K] is equal to the degree of f .

(Remark: An extension L/K in which every element of L is algebraic over K is

termed algebraic: otherwise it is termed transcendental.)

(ii) Prove that a finite extension is algebraic.

(iii) Prove that if L/K is an extension, then the set of elements of L algebraic over

K forms a field.

(iv) Give an example of an algebraic extension which is not finite.

(v) Prove that the class of algebraic extensions is distinguished.

(5) If α is algebraic over K, consider the endomorphism T (β) = αβ of the K-vector space

K(α). Show that the determinant of xI − T (where I = identity) is the minimal

polynomial of α over K.

(6) Find a splitting field over Q for each of the following polynomials, and in each case,

calculate the degree over Q of the field:

x4 − 5x2 + 6, x4 + 5x2 + 6, x6 − 1, x6 + 1, xp − 1, xp − q (p, q primes).
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(7) Show that if K/k is an algebraic extension, and P is the set of elements of K which

are purely inseparable over k, then P is a field.

(8) Show that the class of purely inseparable extensions is distinguished.

(9) (a) Let K/k be a finite extension. Show that there is an intermediate field L such

that L/k is separable and K/L is purely inseparable. [Hint: Let L be the set of

elements of K separable over k. Consider any α ∈ K with minimal ploynomial f

over k. Let n be such that f ∈ k[xpn
] but f /∈ k[xpn+1

]. Deduce that αpn
is separable

over k. Conclude.]

(b) Show that the field L above is unique.

(c) Define [K : k]s = [L : k] and [K : k]i = [K : L]. Show that [− : −]s and [− : −]i

satisfy tower laws. [Hint: You can slog this out. Alternatively, prove that [K : k]s =

the number of distinct k-embeddings of K in L, and conclude.]

(10) Suppose that K/k is algebraic and Char(k)= p > 0. Let Kp = {αp : α ∈ K}.
(a) Show that Kp is a field.

(b) By considering the minimal polynomial of α over K(αp), show that if K/k is

separable, then K = k(Kp).

(c) Suppose that K/k is finite and K = k(Kp). Show that if α1, ..., αn are k-linearly

independent, then so are αp
1, ..., α

p
n. [Hint: Extend to a basis and take p-th powers.].

(d) Suppose that K/k is finite and K = k(Kp). Suppose that α ∈ K is inseparable

over k, and so has minimal polynomial of the form a0 + a1x
p + ... + arx

pr
. Show that

1, α, ..., αr are dependent over k, and obtain a contradiction. Deduce that K/k is

separable.

(11) Suppose that K/k is finite. Prove that K/k is simple if and only if there are only

finitely many fields F intermediate between K and k. [Hints: (i) Assume that K =

k(α) and that α has minimal polynomial f over F . Show that F is generated over k

by the coefficients of f . Deduce that there are only finitely many F .

(ii) Suppose that K/k is not simple. We may assume that k is infinite (why?).

Show that k(x, y)/k is not simple for some x, y: hence show that the fields k(x + cy)

as c varies in k are all distinct.]

(12) Determine the Galois groups of the following polynomials:

(a) x3 − x− 1 over Q.
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(b) x3 − 10 over Q.

(c) x3 − 10 over Q(
√

2).

(d) x3 − 10 over Q(
√
−3).

(e) x3 − x− 1 over Q(
√
−23).

(f) x4 − 5 over Q, Q(
√

5), Q(
√
−5).

(g) x4 − a over Q, where a is any squarefree integer 6= 0,±1.

(h) x4 + 2 over Q(i).

(i) (x2 − 2)(x2 − 3)(x2 − 5) over Q.

(j) (x2 − p1)...(x
2 − pn) over Q, where p1, ..., pn are distinct primes.

(k) xn − t over C(t), where t is transcendental over C.

(13) (a) Suppose that [K : k] = 2, that every element of K has a square root in K, that

every polynomial of odd degree in k[x] has a root in k, and that char(k) 6= 2. Prove

that K is algebraically closed.

[Hint: Let f be an irreducible polynomial over k, with splitting field L over k and

Galois group G, with H = Gal(L/K). By considering the fixed field of a Sylow

2-subgroup of G, show that |G| = 2n, |H| = 2n−1 for some n. By further considering

the fixed field of a subgroup of index 2 in H, show that if |H| > 1, then there is an

irreducible polynomial of degree 2 over K.]

(b) Prove that C is algebraically closed.

(14) Let a, b, c be elements of a field k of characteristic 6= 2 or 3, such that f(X) =

X3 + aX2 + bX + c is irreducible over k, and let x1, x2, x3 be the roots of f(X) in a

splitting field.

(i) If ∆ = (x1− x2)(x2− x3)(x3− x1), show that ∆2 ∈ k, and obtain a formula for

∆2 in terms of a, b, c.

(ii) If ω 6= 1 is a cube root of 1 in k, show that (x1 + ωx2 + ω2x3)
3 is in k(∆), and

obtain a formula for it in terms of a, b, c and ∆.

(15) Suppose that t is transcendental over a field K. Show that there exists a unique

K-automorphism σ of K(t) such that σ(t) = 1/(1− t).

Prove that σ3 is equal to the identity. Find Fix(< σ >), and show that it is a

simple transcendental extension of K.
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If the characteristic of K is not equal to 2, show that there exists a unique K-

automorphism τ of K(t) such that τ(t) = 2t. Prove that Fix(< τ >) = K if and

only if K is of characteristic zero.

(16) Suppose that k is a field of characteristic p > 0, and that x, y are independent

transcendentals over k (that is, if f ∈ k[X, Y ] and f(x, y) = 0, then f = 0)). Let

K = k(x, y) and L = k(xp, yp). Prove that [K : L] = p2, but that if z lies in K, then

zp lies in L, and so K 6= L(z).

Show further that there are infinitely many fields between L and K.

(17) Comment on the following “proof” of the existence of an algebraic closure:

“Let k be a field, and S the set of all fields which are algebraic over k, ordered

under inclusion. Then S is non-empty, and if T is a subset of S such that K, L ∈ T

implies that K ⊂ L or L ⊂ K, then ∪H∈T H is an element of S and an upper bound

for T . Hence, by Zorn’s Lemma, there is a maximal element M ∈ S. If M is not

algebraically closed, then we can construct an algebraic extension of M , and this

contradicts the maximality of M . Hence M is an algebraic closure of k.”

[Hint: It IS wrong!]

(18) Let G be a (possibly infinite) group, let K be a normal subgroup of finite index in

G, and let t1, ..., tr be representatives of the cosets of K in G. Suppose that V is a

finite dimensional, completely reducible CG-module. Show that:

(a) If U is a CK-submodule of V , and g ∈ G, then Ug = {ug|u ∈ U} is a

CK-submodule of V .

(b) If U is a CK-submodule of V , then
∑r

1 Uti is a CG-submodule of V .

(c) V is completely reducible when regarded as a CK-module.

(19) A (not necessarily finite) group G has a (normal) subgroup H of index 2, and t

is an element of G but not H. A CG-space V is given. Show that if φ is a CH

endomorphism of V , then the map φt : V → V given by φt(v) = t−1φ(tv) (v ∈ V ) is

also a CH-endomorphism.

By considering (1/2)(φ + φt) for suitably chosen φ, prove that if V is completely

reducible as a CH-space, it is also completely reducible as a CG-space.
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(20) (i) A representation of a group G is said to be faithful if it has trivial kernel. Show

that a finite group which has a faithful irreducible complex representation must have

a cyclic centre. [Hint: Schur’s lemma.]

(ii) A group G of order 18 has a non-cyclic abelian subgroup A of order 9, and an

element x of order 2 such that x−1ax = a−1 for all a ∈ A. By considering the action

of A on an irreducible CG-module, prove that G has no faithful irreducible complex

representation.

(21) (i) Let p be a prime number, and let G be a finite p-group with cyclic centre Z.

Suppose that ρ is a faithful representation over C of G. Prove that some irreducible

component of ρ is faithful. [Hint: You may find it helpful to use the facts that, since

G is a p-group, Z is non-trivial, and any non-trivial normal subgroup of G intersects

G non-trivially.]

(ii) Deduce that a finite p-group has a faithful irreducible representation over C if,

and only if, its centre is cyclic.

(22) (a) Suppose that y is an element of order 3 in a finite group G, and that y is conjugate

to y−1. Show that if χ is any C-valued character of G, then χ(y) is a rational integer,

and χ(y) ≡ χ(1) modulo 3.

(b) Suppose further that 1, y, y−1 are the only elements of G which commute

with y. Show that G has precisely 3 irreducible complex-valued characters of degree

coprime to 3.

(23) (a) Let G be a finite group. Suppose that y is an element of G of order 4 which is

conjugate to its inverse in G. Prove that if χ is a character of G, then χ(y) is an

integer, and χ(y) ≡ χ(1) modulo 2.

(b) Prove that if 1, y, y2, and y3 are the only elements of G which commute with

y, then G has precisely 4 irreducible characters of odd degree. [Hint: Orthogonality

relations for the character table.]

(24) A group of order 720 has 11 conjugacy classes. Two representations of the group are

known, and have corresponding characters α and β. The table below gives the sizes
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of the classes and the values which α and β take on them:

1 15 40 90 45 120 144 120 90 15 40

α 6 2 0 0 2 2 1 1 0 −2 3

β 21 1 −3 −1 1 1 1 0 −1 −3 0

Prove that the group has an irreducible representation of degree 16, and write down

the values that the corresponding character has on the classes.
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