
HOMEWORK 4

SOLUTIONS

(1) Draw the tree whose Prüfer code is (1, 1, 1, 1, 6, 5).
Solution: The given Prüfer code has six entries, therefore the corresponding

tree will have 6 + 2 = 8 entries.
The first number in the Prüfer code is 1 and the lowest number not included in

the Prüfer code is 2, so we connect 1 to 2.
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We then drop the leading 1 in the code and put 2 at the back of the code:
(1, 1, 1, 6, 5, 2).

The first number in the code is still 1 and the lowest number not included is now
3, so we connect 1 to 3.
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We, again, drop the leading 1 and then put 3 at the back of the code: (1, 1, 6, 5, 2, 3).
The first number in the code is still 1 and the lowest number not included is now

4, so we connect 1 to 4.
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We drop the leading 1 and put 4 at the back of the code: (1, 6, 5, 2, 3, 4).
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The first number in the code is, yet again, 1 and the lowest number not included
is now 7. So we connect 1 to 7.
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We drop the leading 1 an put 7 at the back of the code: (6, 5, 2, 3, 4, 7).
The first number in the code is now 6 and the lowest number not included is 1,

so we connect 6 to 1.
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We drop the 6 from the code and put 1 at the back: (5, 2, 3, 4, 7, 1).
Now the first number in the code is 5 and the lowest number not included is 6,

so we connect 5 to 6.

•
2

????????? •
7

���������

•
1

•
6

•
5

•
3

��������� •
4

<<<<<<<<<

We drop the 5 from the code and put 6 at the back: (2, 3, 4, 7, 1, 6).
We have iterated all the way through the code and the two numbers missing are

5 and 8. So we connect them.
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And we are done.
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(2) Determine which trees have Prüfer codes that have distinct values in all positions.
Solution: The number of positions in a Prüfer code is two less than the number

of vertices in the corresponding tree. So if a Prüfer code has distinct values in all
positions, two vertex labels do not appear and the remaining labels appear only
once. Observe that the degree of a vertex in a labeled tree is one more than the
number of times the label of that vertex appears in the corresponding Prüfer code.
Therefore, a tree with a distinct-valued Prüfer code has exactly two vertices of
degree 1 and all other vertices have degree 2.

Now, let T be a tree with exactly two leaves and all other vertices having degree
2. Let P be the unique path in T from one leaf of T to the other. Then P is a
subgraph of T . In fact, P is all of T , since the existence of a vertex of T that is not
in P would change the degree of at least one vertex of P . Thus T must be a path.

(3) Let G be a connected graph which is not a tree and let C be a cycle in G. Prove
that the complement of any spanning tree of G contains at least one edge of C.

Solution: Let T be a spanning tree of G. Let C be a cycle in G and assume
that T contains no edge of C. Then T necessarily contains every edge of C. As T
is a tree and therefore acyclic, we have a contradiction.

(4) Suppose a graph G is formed by taking two disjoint connected graphs G1 and G2

and identifying a vertex in G1 with a vertex in G2. Show that τ(G) = τ(G1)τ(G2).
Solution: Let G be the graph that results from identifying the vertex v1 ∈

V (G1) with the vertex v2 ∈ V (G2). Let T (G) be the set of all spanning trees of G.
Similarly define T (G1) and T (G2). Assume that G1 has n vertices and G2 has m
vertices. Then G contains n+m− 1 vertices.

Let φ : T (G)→ T (G1)×T (G2) send a spanning tree T of G to the ordered pair
of subgraphs (T1, T2), where T1 is the subgraph of G1 induced by the edges of T
that lie in G1 and T2 is the subgraph of G2 induced by the edges of T that lie in
G2.

The graph T1 is truly a spanning tree of G1: that it is acyclic and connected
follows from the fact that T is acyclic and connected. Similarly for T2. Furthermore,
the inverse image of a pair (T1, T2) ∈ T (G1)×T (G2) is a connected subgraph of G
containing n− 1 +m− 1 = n+m− 2 = (n+m− 1)− 1 vertices, i.e., a spanning
tree of G.

The map φ is bijective since a tree is completely defined by its edges and E(G) =
E(G1) ∪ E(G2). Hence

|T (G)| = |T (G1)× T (G2)|.

Which implies that

τ(G) = τ(G1)τ(G2).
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(5) Assume the graph G has two components G1 and G2. Show there is a labeling of
the vertices of G such that the adjacency matrix of G has the form

A(G) =

(
A(G1) 0

0 A(G2)

)
.

Solution: Suppose that the graph G1 contains p vertices and the graph G2

contains q vertices. Then G has p+ q vertices.
Assign G1 the vertex label V (G1) = {u1, · · ·up} and G2 the vertex label V (G2) =

{up+1, · · ·up+q}. Then the vertex label V (G) = {u1, · · ·up+q} induces an adjacency
matrix for G with the required form.

(6) An m-fold path, mPn, is formed from Pn by replacing each edge with a multiple
edge of multiplicity m. An m-fold cycle, mCn, is formed from Cn by replacing each
edge with a multiple edge of multiplicity m.

(a) Find τ(mPn)
(b) Find τ(mCn)
Solution: For part (a), there are m choices of edge for each edge of the under-

lying path, giving a total of mn−1 spanning trees.
For part (b), we observe that there are n ways to reduce the problem to that of

part (a), giving a total of nmn−1 spanning trees.

(7) Find τ(K2,3).
Solution: There are, of course, many ways to go about this. One way is to note

that K2,3 has 5 vertices and 6 edges. Any spanning tree would have exactly four

edges and there are
(
6
2

)
= 15 ways to remove two edges.

But this is clearly an over counting, since removing just any two edges doesn’t
work. You can see from the following representation of τ(K2,3) that the pairs
of edges that don’t produce a tree are those incident to the same vertex in the
bipartition set of order 3.
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There are 3 such pairs. Hence, τ(K2,3) = 15− 3 = 12.

(8) Use the Matrix-Tree Formula to compute τ(K3,n).
Solution: The degree matrix of K3,n is the diagonal matrix where the (i, i)

entry is the degree of the ith vertex. Hence, with respect to an appropriate labeling,
D(K3,n) is the (n+ 3)× (n+ 3) matrix given by
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D(K3,n) =



n
n

n
3

3
. . .

3


The adjacency matrix has as its (i, j) entry the number of edges between the ith

and jth vertices. Therefore, with respect to the same vertex labeling used for the
degree matrix, we have

A(K3,n) =



0 0 0 1 1 . . . 1
0 0 0 1 1 . . . 1
0 0 0 1 1 . . . 1
1 1 1
1 1 1
...

...
... 0

1 1 1



Therefore,

T (G) = D(K3,n)−A(K3,n) =



n −1 −1 . . . −1
n −1 −1 . . . −1

n −1 −1 . . . −1
−1 −1 −1 3
−1 −1 −1 3
...

...
...

. . .

−1 −1 −1 3



By the Matrix-Tree Theorem, τ(K3,n) is equal to any cofactor of T (G). Let’s
compute the (1, 1) cofactor. To do so we remove the first row and first column
from T (G) and take the determinant of the resulting matrix (and then multiply by
(−1)2 = 1).

So, we have
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τ(K3,n) = det



n −1 −1 . . . −1
n −1 −1 . . . −1

−1 −1 3
−1 −1 3
...

...
. . .

−1 −1 3


Subtracting the first column from the second column gives

τ(K3,n) = det



n −n −1 −1 . . . −1
n −1 −1 . . . −1

−1 0 3
−1 0 3
...

...
. . .

−1 0 3


We then multiply the first column by 3.

τ(K3,n) =
1

3
det



3n −n −1 −1 . . . −1
n −1 −1 . . . −1

−3 0 3
−3 0 3
...

...
. . .

−3 0 3


Finally, by adding columns 2, . . . , n+ 2 to the first column we get

τ(K3,n) =
1

3
det



n −n −1 −1 . . . −1
n −1 −1 . . . −1

0 0 3
0 0 3
...

...
. . .

0 0 3


=n23n−1


