HOMEWORK 4

SOLUTIONS

(1) Draw the tree whose Prüfer code is $(1,1,1,1,6,5)$.

Solution: The given Prüfer code has six entries, therefore the corresponding tree will have $6+2=8$ entries.

The first number in the Prüfer code is 1 and the lowest number not included in the Prüfer code is 2 , so we connect 1 to 2 .

We then drop the leading 1 in the code and put 2 at the back of the code: (1, 1, 1, 6, 5, 2).

The first number in the code is still 1 and the lowest number not included is now 3 , so we connect 1 to 3 .

We, again, drop the leading 1 and then put 3 at the back of the code: $(1,1,6,5,2,3)$.
The first number in the code is still 1 and the lowest number not included is now 4 , so we connect 1 to 4 .

We drop the leading 1 and put 4 at the back of the code: $(1,6,5,2,3,4)$.

The first number in the code is, yet again, 1 and the lowest number not included is now 7 . So we connect 1 to 7 .

We drop the leading 1 an put 7 at the back of the code: $(6,5,2,3,4,7)$.
The first number in the code is now 6 and the lowest number not included is 1 , so we connect 6 to 1 .

We drop the 6 from the code and put 1 at the back: ($5,2,3,4,7,1$).
Now the first number in the code is 5 and the lowest number not included is 6 , so we connect 5 to 6 .

We drop the 5 from the code and put 6 at the back: $(2,3,4,7,1,6)$.
We have iterated all the way through the code and the two numbers missing are 5 and 8 . So we connect them.

And we are done.
(2) Determine which trees have Prüfer codes that have distinct values in all positions.

Solution: The number of positions in a Prüfer code is two less than the number of vertices in the corresponding tree. So if a Prüfer code has distinct values in all positions, two vertex labels do not appear and the remaining labels appear only once. Observe that the degree of a vertex in a labeled tree is one more than the number of times the label of that vertex appears in the corresponding Prüfer code. Therefore, a tree with a distinct-valued Prüfer code has exactly two vertices of degree 1 and all other vertices have degree 2 .

Now, let T be a tree with exactly two leaves and all other vertices having degree 2. Let P be the unique path in T from one leaf of T to the other. Then P is a subgraph of T. In fact, P is all of T, since the existence of a vertex of T that is not in P would change the degree of at least one vertex of P. Thus T must be a path.
(3) Let G be a connected graph which is not a tree and let C be a cycle in G. Prove that the complement of any spanning tree of G contains at least one edge of C.

Solution: Let T be a spanning tree of G. Let C be a cycle in G and assume that \bar{T} contains no edge of C. Then T necessarily contains every edge of C. As T is a tree and therefore acyclic, we have a contradiction.
(4) Suppose a graph G is formed by taking two disjoint connected graphs G_{1} and G_{2} and identifying a vertex in G_{1} with a vertex in G_{2}. Show that $\tau(G)=\tau\left(G_{1}\right) \tau\left(G_{2}\right)$.

Solution: Let G be the graph that results from identifying the vertex $v_{1} \in$ $V\left(G_{1}\right)$ with the vertex $v_{2} \in V\left(G_{2}\right)$. Let $\mathcal{T}(G)$ be the set of all spanning trees of G. Similarly define $\mathcal{T}\left(G_{1}\right)$ and $\mathcal{T}\left(G_{2}\right)$. Assume that G_{1} has n vertices and G_{2} has m vertices. Then G contains $n+m-1$ vertices.

Let $\phi: \mathcal{T}(G) \rightarrow \mathcal{T}\left(G_{1}\right) \times \mathcal{T}\left(G_{2}\right)$ send a spanning tree T of G to the ordered pair of subgraphs $\left(T_{1}, T_{2}\right)$, where T_{1} is the subgraph of G_{1} induced by the edges of T that lie in G_{1} and T_{2} is the subgraph of G_{2} induced by the edges of T that lie in G_{2}.

The graph T_{1} is truly a spanning tree of G_{1} : that it is acyclic and connected follows from the fact that T is acyclic and connected. Similarly for T_{2}. Furthermore, the inverse image of a pair $\left(T_{1}, T_{2}\right) \in \mathcal{T}\left(G_{1}\right) \times \mathcal{T}\left(G_{2}\right)$ is a connected subgraph of G containing $n-1+m-1=n+m-2=(n+m-1)-1$ vertices, i.e., a spanning tree of G.

The map ϕ is bijective since a tree is completely defined by its edges and $E(G)=$ $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. Hence

$$
|\mathcal{T}(G)|=\left|\mathcal{T}\left(G_{1}\right) \times \mathcal{T}\left(G_{2}\right)\right| .
$$

Which implies that

$$
\tau(G)=\tau\left(G_{1}\right) \tau\left(G_{2}\right)
$$

(5) Assume the graph G has two components G_{1} and G_{2}. Show there is a labeling of the vertices of G such that the adjacency matrix of G has the form

$$
\mathbf{A}(G)=\left(\begin{array}{cc}
\mathbf{A}\left(G_{1}\right) & \mathbf{0} \\
\mathbf{0} & \mathbf{A}\left(G_{2}\right)
\end{array}\right)
$$

Solution: Suppose that the graph G_{1} contains p vertices and the graph G_{2} contains q vertices. Then G has $p+q$ vertices.

Assign G_{1} the vertex label $V\left(G_{1}\right)=\left\{u_{1}, \cdots u_{p}\right\}$ and G_{2} the vertex label $V\left(G_{2}\right)=$ $\left\{u_{p+1}, \cdots u_{p+q}\right\}$. Then the vertex label $V(G)=\left\{u_{1}, \cdots u_{p+q}\right\}$ induces an adjacency matrix for G with the required form.
(6) An m-fold path, $m P_{n}$, is formed from P_{n} by replacing each edge with a multiple edge of multiplicity m. An m-fold cycle, $m C_{n}$, is formed from C_{n} by replacing each edge with a multiple edge of multiplicity m.
(a) Find $\tau\left(m P_{n}\right)$
(b) Find $\tau\left(m C_{n}\right)$

Solution: For part (a), there are m choices of edge for each edge of the underlying path, giving a total of m^{n-1} spanning trees.

For part (b), we observe that there are n ways to reduce the problem to that of part (a), giving a total of $n m^{n-1}$ spanning trees.
(7) Find $\tau\left(K_{2,3}\right)$.

Solution: There are, of course, many ways to go about this. One way is to note that $K_{2,3}$ has 5 vertices and 6 edges. Any spanning tree would have exactly four edges and there are $\binom{6}{2}=15$ ways to remove two edges.

But this is clearly an over counting, since removing just any two edges doesn't work. You can see from the following representation of $\tau\left(K_{2,3}\right)$ that the pairs of edges that don't produce a tree are those incident to the same vertex in the bipartition set of order 3 .

There are 3 such pairs. Hence, $\tau\left(K_{2,3}\right)=15-3=12$.
(8) Use the Matrix-Tree Formula to compute $\tau\left(K_{3, n}\right)$.

Solution: The degree matrix of $K_{3, n}$ is the diagonal matrix where the (i, i) entry is the degree of the $i^{\text {th }}$ vertex. Hence, with respect to an appropriate labeling, $D\left(K_{3, n}\right)$ is the $(n+3) \times(n+3)$ matrix given by

$$
D\left(K_{3, n}\right)=\left(\begin{array}{cccccc}
n & & & & & \\
& n & & & & \\
& & n & & & \\
& & & 3 & & \\
\\
& & & & 3 & \\
\\
& & & & & \ddots
\end{array}\right)
$$

The adjacency matrix has as its (i, j) entry the number of edges between the $i^{\text {th }}$ and $j^{\text {th }}$ vertices. Therefore, with respect to the same vertex labeling used for the degree matrix, we have

$$
A\left(K_{3, n}\right)=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 1 & \ldots & 1 \\
0 & 0 & 0 & 1 & 1 & \ldots & 1 \\
0 & 0 & 0 & 1 & 1 & \ldots & 1 \\
1 & 1 & 1 & & & & \\
1 & 1 & 1 & & & & \\
\vdots & \vdots & \vdots & & & \mathbf{0} & \\
1 & 1 & 1 & & & &
\end{array}\right)
$$

Therefore,

$$
T(G)=D\left(K_{3, n}\right)-A\left(K_{3, n}\right)=\left(\begin{array}{ccccccc}
n & & & -1 & -1 & \ldots & -1 \\
& n & & -1 & -1 & \ldots & -1 \\
& & n & -1 & -1 & \ldots & -1 \\
-1 & -1 & -1 & 3 & & & \\
-1 & -1 & -1 & & 3 & & \\
\vdots & \vdots & \vdots & & & \ddots & \\
-1 & -1 & -1 & & & & 3
\end{array}\right)
$$

By the Matrix-Tree Theorem, $\tau\left(K_{3, n}\right)$ is equal to any cofactor of $T(G)$. Let's compute the $(1,1)$ cofactor. To do so we remove the first row and first column from $T(G)$ and take the determinant of the resulting matrix (and then multiply by $(-1)^{2}=1$.

So, we have

$$
\tau\left(K_{3, n}\right)=\operatorname{det}\left(\begin{array}{cccccc}
n & & -1 & -1 & \ldots & -1 \\
& n & -1 & -1 & \ldots & -1 \\
-1 & -1 & 3 & & & \\
-1 & -1 & & 3 & & \\
\vdots & \vdots & & & \ddots & \\
-1 & -1 & & & & 3
\end{array}\right)
$$

Subtracting the first column from the second column gives

$$
\tau\left(K_{3, n}\right)=\operatorname{det}\left(\begin{array}{cccccc}
n & -n & -1 & -1 & \ldots & -1 \\
& n & -1 & -1 & \ldots & -1 \\
-1 & 0 & 3 & & & \\
-1 & 0 & & 3 & & \\
\vdots & \vdots & & & \ddots & \\
-1 & 0 & & & & 3
\end{array}\right)
$$

We then multiply the first column by 3 .

$$
\tau\left(K_{3, n}\right)=\frac{1}{3} \operatorname{det}\left(\begin{array}{cccccc}
3 n & -n & -1 & -1 & \ldots & -1 \\
& n & -1 & -1 & \ldots & -1 \\
-3 & 0 & 3 & & & \\
-3 & 0 & & 3 & & \\
\vdots & \vdots & & & \ddots & \\
-3 & 0 & & & & 3
\end{array}\right)
$$

Finally, by adding columns $2, \ldots, n+2$ to the first column we get

$$
\begin{aligned}
\tau\left(K_{3, n}\right) & =\frac{1}{3} \operatorname{det}\left(\begin{array}{cccccc}
n & -n & -1 & -1 & \ldots & -1 \\
& n & -1 & -1 & \ldots & -1 \\
0 & 0 & 3 & & & \\
0 & 0 & & 3 & & \\
\vdots & \vdots & & & \ddots & \\
0 & 0 & & & & 3
\end{array}\right) \\
& =n^{2} 3^{n-1}
\end{aligned}
$$

