HOMEWORK 4

8 PROBLEMS
DUE: WEDNESDAY, MARCH 2, 2011
(1) Draw the tree whose Prüfer code is $(1,1,1,1,6,5)$.
(2) Determine which trees have Prüfer codes that have distinct values in all positions.
(3) Let G be a connected graph which is not a tree and let C be a cycle in G. Prove that the complement of any spanning tree of G contains at least one edge of C.
(4) Suppose a graph G is formed by taking two disjoint connected graphs G_{1} and G_{2} and identifying a vertex in G_{1} with a vertex in G_{2}. Show that $\tau(G)=\tau\left(G_{1}\right) \tau\left(G_{2}\right)$.
(5) Assume the graph G has two components G_{1} and G_{2}. Show there is a labeling of the vertices of G such that the adjacency matrix of G has the form

$$
\mathbf{A}(G)=\left(\begin{array}{cc}
\mathbf{A}\left(G_{1}\right) & \mathbf{0} \\
\mathbf{0} & \mathbf{A}\left(G_{2}\right)
\end{array}\right)
$$

(6) An m-fold path, $m P_{n}$, is formed from P_{n} by replacing each edge with a multiple edge of multiplicity m. An m-fold cycle, $m C_{n}$, is formed from C_{n} by replacing each edge with a multiple edge of multiplicity m.
(a) Find $\tau\left(m P_{n}\right)$
(b) Find $\tau\left(m C_{n}\right)$
(7) Find $\tau\left(K_{2,3}\right)$.
(8) Use the Matrix-Tree Formula to compute $\tau\left(K_{3, n}\right)$.

