HOMEWORK 3

8 PROBLEMS

DUE: WEDNESDAY, FEBRUARY 16, 2011
(1) Show that for each $n \in \mathbb{N}$ the complete graph K_{n} is a contraction of $K_{n, n}$.
(2) For $n \in \mathbb{N}$, can K_{n} be a contraction of $K_{m, n}$ if $m<n$?
(3) The complete tripartite graph $K_{r, s, t}$ consists of three disjoint sets of vertices (of sizes r, s and t), with an edge joining two vertices if and only if they lie in different sets. Draw $K_{2,2,2}$. What is the number of edges of $K_{2,3,4}$?
(4) There are exactly 11 unlabeled trees on seven vertices. Draw these eleven trees, making sure that no two are isomorphic.
(5) Show that every tree containing a vertex of degree k contains at least k leaves.
(6) For two points in $\mathbb{R}^{2}, P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, let $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
d\left(P_{1}, P_{2}\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right| .
$$

Show that d is a metric on \mathbb{R}^{2}.
(7) For all $n \in N$ what is the eccentricity of each vertex of K_{n} ? How many centers does K_{n} have?
(8) Draw all spanning trees of the graph G.

G :

