# HOMEWORK 2 

8 PROBLEMS<br>DUE: WEDNESDAY, FEBRUARY 2, 2011

(1) Let G be a simple graph where the vertices correspond to each of the squares of an $8 \times 8$ chess board and where two squares are adjacent if, and only if, a knight can go from one square to the other in one move. What is/are the possible degree(s) of a vertex in $G$ ? How many vertices have each degree? How many edges does $G$ have?
(2) Let $G$ be a graph with $n$ vertices and exactly $n-1$ edges. Prove that $G$ has either a vertex of degree 1 or an isolated vertex.
(3) Prove that if a graph $G$ has exactly two vertices $u$ and $v$ of odd degree, then $G$ has a $u, v$-path.
(4) Let $G$ be a simple graph. Show that either $G$ or its complement $\bar{G}$ is connected.
(5) Are any of the graphs $N_{n}, P_{n}, C_{n}, K_{n}$ and $K_{n, n}$ complements of each other?
(6) Show that if a simple graph $G$ is isomorphic to its complement $\bar{G}$, then $G$ has either $4 k$ or $4 k+1$ vertices for some natural number $k$. Find all simple graphs on four and five vertices that are isomorphic to their complements.
(7) The complete bipartite graphs $K_{1, n}$, known as the star graphs, are trees. Prove that the star graphs are the only complete bipartite graphs which are trees.
(8) A graph $G$ is bipartite if there exists nonempty sets $X$ and $Y$ such that $V(G)=$ $X \cup Y, X \cap Y=\emptyset$ and each edge in $G$ has one endvertex in $X$ and one endvertex in $Y$. Prove that any tree with at least two vertices is a bipartite graph.

