HOMEWORK 1

8 PROBLEMS

DUE: WEDNESDAY, JANUARY 19, 2011
(1) Let $A=\{3,4,5\}, B=\{3,4\}, C=\{4\}$. Find $D=A \triangle B \triangle C$.
(2) Suppose 70% of Californians like cheese, 80% like apples and 10% like neither. What percentage of Californians like both cheese and apples?
(3) Use the Principle of Mathematical Induction to prove that for $n \in \mathbb{N}, n^{3}-n$ is always divisible by 3 .
(4) Find a surjective function from \mathbb{N} to \mathbb{Z}. Find an injective function from \mathbb{Z} to \mathbb{N}.
(5) Write an explicit description of the edgemap for the complete bipartite (3,5)-graph.
(6) Is there a simple graph on 6 vertices such that the vertices all have distinct degree? If not, why not? If so, draw one.
(7) Let G be a k-regular graph, where k is an odd number. Prove that the number of edges in G is a multiple of k.
(8) Prove that it is impossible to have a group of nine people at a party such that each one knows exactly five of the others in the group.

