
MATH 137A Final Exam
Thursday, March 17, 2011

SOLUTIONS

1. Give two different reasons why the graphs below are not isomorphic.
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Solution: Both A and B are simple graphs with six vertices and seven edges. Both
graphs contain exactly two 3-cliques. Both graphs contain two vertices of degree 1,
one vertex of degree 2, two vertices of degree 3, and one vertex of degree 4.

However:

(a) The vertex of degree 4 in graph A has neighbors with degree 1, 1, 3 and 3, while
the vertex of degree 4 in B has neighbors with degree 1, 2, 3 and 3.

(b) In graph A, every vertex of degree 3 has a vertex of degree 2 as a neighbor. In
graph B, there exists a vertex of degree 3 with no vertex of degree 2 as a neighbor.

(c) The graph B contains a Hamiltonian path, a walk that includes every vertex of
B exactly once. Graph A contains no such path.

(d) If we remove the vertex of degree 4 from A we get a graph with three components.
Removing any vertex in graph B results in a graph of no more than 2 components.

(e) The shortest distance between the leaves of A is 2. The shortest distance between
the leaves of B is 3.
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2. Let G be a graph with exactly 10 vertices and 27 edges. Suppose that each vertex has
degree 3, 5, or 7, and that there are exactly 2 vertices of degree 5. How many vertices
of degree 7 does G have? Justify your answer.

Solution:

Let x, y and z denote the number of vertices in G of degree 3, 5 and 7, respectively.
We are interested in the value of z.

Since all possible degrees are accounted for, we have

x+ y + z = 10.

From the statement of the problem, we have

y = 2.

Finally, by the Hand Shaking Theorem, we have

3x+ 5y + 7z = 2× 27.

The three equations in three unknowns reduce to a system of two equations in two
unknowns:

x+ z = 8

3x+ 7z = 44.

Hence, z = 5.
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3. Let G be a simple connected graph. The square of G, denoted G2, is defined to be
the graph with the same vertex set as G in which two vertices u and v are adjacent if
and only if the distance between u and v in G is 1 or 2.

In other words, in the square of a graph G, vertices that were adjacent remain so. And
in addition, vertices that were connected by a path of length 2 become adjacent.

(a) Show that the square of K1,3 is K4.

(b) Find two more graphs whose square is K4.

Solution:

(a) Consider the following labeled representation of K1,3.
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By definition, K2
1,3 will keep the existing edges of K1,3 and then join a to b, a to

c and b to c.
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Hence K2
1,3 is isomorphic to K4.
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4. What is the number of regular binary trees on 9 vertices?

Solution: A binary tree is an ordered rooted tree in which each vertex has at most
two children. A regular binary tree is a binary tree where every vertex has an even
number of children. We proved in class that the number of regular binary trees on
2n+ 1 vertices is Cn, the nth Catalan number. As 9 = 2× 4 + 1, the number of regular
binary trees on 9 vertices is

C4 =
1

4 + 1

(
2× 4

4

)
=

1

5
× 70 = 14.
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5. Find the weight of a minimum cost spanning tree for the weighted graph below.
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Solution: We employ Kruskal’s algorithm. First, choose all edges weighted 1 2 or 3,
except for the one edge of weight 3 that would create a cycle. Then choose the single
edge of weight 4 that does not create a cycle. Finally, add the one of the edges of
weight 5 that will not create a cycle. All 12− 1 = 11 edges are thus accounted for and
we have a minimum cost spanning tree of weight 27.
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6. Determine whether the given graph is Hamiltonian. If it is, find a Hamiltonian cycle.
If it is not, prove it is not.
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Solution: A necessary condition for a graph to be Hamiltonian is that for each
nonempty S ⊆ V (G), the number of components of G − S is less that or equal to
the number of elements of S. Let G be the graph given above and let S = {u, v} be
the set of vertices as indicated below.
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Then the graph G− S has 3 components.
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Since 3 � 2, the graph G is not Hamiltonian.
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7. Give a clear and careful proof of the following: A connected bipartite graph has a
unique bipartition (except for, of course, interchanging the two bipartition sets).

Solution: Let G be a connected bipartite graph. Let X, Y,X ′, Y ′ ⊆ V (G), where
X, Y and X ′, Y ′ are distinct bipartitions of the vertex set of G.

We then have that

(a) X ∪ Y = V (G) = X ′ ∪ Y ′

(b) X ∩ Y = ∅ = X ′ ∩ Y ′

(c) G[X], G[Y ], G[X ′] and G[Y ′] are all null graphs.

Let A = (X ∩X ′)∪ (Y ∩Y ′) and B = (Y ∩X ′)∪ (X ∩Y ′). Note that the set A cannot
be empty. If it were, it would mean that X ⊆ Y ′ and Y ⊆ X ′. This, in turn, implies
that X = Y ′ and Y = X ′, i.e., the bipartition sets have been switched. Similarly,
B 6= ∅.
Now let v ∈ A ⊆ V (G). Then either v ∈ X ∩X ′ or v ∈ Y ∩ Y ′. If v ∈ X ∩X ′, then v
cannot be adjacent to any vertex in Y ∩X ′, since G[X ′] is a null graph. Furthermore,
v cannot be adjacent to any vertex in X ∩ Y ′, since G[X] is a null graph. Hence, v is
not adjacent to any vertex in B. We reach the same conclusion when v ∈ Y ∩ Y ′.

So we have that no vertex in A can have a vertex in B as a neighbor. Since

A ∪B =[(X ∩X ′) ∪ (Y ∩ Y ′)] ∪ [(Y ∩X ′) ∪ (X ∩ Y ′)]

=[(X ∩X ′) ∪ (Y ∩X ′)] ∪ [(Y ∩ Y ′) ∪ (X ∩ Y ′)]

=[(X ∪ Y ) ∩X ′] ∪ [(Y ∪X) ∩ Y ′]

=[V (G) ∩X ′] ∪ [V (G) ∩ Y ′]

=X ′ ∪ Y ′

=V (G)

the graph G is disconnected. Contradiction.
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8. Compute the total resistance between u and v in the electrical network of resistors
corresponding to the graph below, where each resistor is one ohm.
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Solution: Let G be the graph corresponding to the given electrical network. We
compute τ(G) using the Matrix-Tree Theorem. First label graph G as follows.
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Then

T (G) = D(G)− A(G) =


3 −1 0 −1 −1
−1 3 −1 0 −1
0 −1 3 −1 −1
−1 0 −1 3 −1
−1 −1 −1 −1 4

 .

By the Matrix-Tree Theorem, τ(G) is equal to the (5, 5)-cofactor of T . Thus

τ(G) = det


3 −1 0 −1
−1 3 −1 0
0 −1 3 −1
−1 0 −1 3

 .

To make our lives easier, we first subtract column 2 from column 4.

τ(G) = det


3 −1 0 0
−1 3 −1 −3
0 −1 3 0
−1 0 −1 3

 .
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Then we expand the determinant along the first row.

τ(G) =(−1)1+1 · 3 · det

 3 −1 −3
−1 3 0
0 −1 3

+ (−1)1+2 · (−1) · det

 −1 −1 −3
0 3 0
−1 −1 3


=3× 21− 18

=45

Now we are interested in τuv(G
′), or rather τ(G′′). That is, the number of spanning

trees of the graph obtained from G by identifying the vertices u and v.

We can visualize G′′ simply by giving u and v the same label in G.
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Or equivalently,
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Then

T (G′′) = D(G′′)− A(G′′) =


6 −2 −2 −2
−2 3 0 −1
−2 0 3 −1
−2 −1 −1 4

 .

Hence

τ(G′′) = det

 6 −2 −2
−2 3 0
−2 0 3

 = 30.

From the results shown in class, we now conclude that the total resistance of the
network between u and v is given by.

Rt =
τ(G′′)

τ(G)
=

30

45
=

2

3
.
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