MATH 137A Final Exam
Thursday, March 17, 2011

SOLUTIONS

1. Give two different reasons why the graphs below are not isomorphic.

Solution: Both A and B are simple graphs with six vertices and seven edges. Both graphs contain exactly two 3-cliques. Both graphs contain two vertices of degree 1 , one vertex of degree 2 , two vertices of degree 3 , and one vertex of degree 4 .
However:
(a) The vertex of degree 4 in graph A has neighbors with degree $1,1,3$ and 3 , while the vertex of degree 4 in B has neighbors with degree $1,2,3$ and 3 .
(b) In graph A, every vertex of degree 3 has a vertex of degree 2 as a neighbor. In graph B, there exists a vertex of degree 3 with no vertex of degree 2 as a neighbor.
(c) The graph B contains a Hamiltonian path, a walk that includes every vertex of B exactly once. Graph A contains no such path.
(d) If we remove the vertex of degree 4 from A we get a graph with three components. Removing any vertex in graph B results in a graph of no more than 2 components.
(e) The shortest distance between the leaves of A is 2 . The shortest distance between the leaves of B is 3 .
2. Let G be a graph with exactly 10 vertices and 27 edges. Suppose that each vertex has degree 3,5 , or 7 , and that there are exactly 2 vertices of degree 5 . How many vertices of degree 7 does G have? Justify your answer.

Solution:

Let x, y and z denote the number of vertices in G of degree 3,5 and 7 , respectively. We are interested in the value of z.
Since all possible degrees are accounted for, we have

$$
x+y+z=10 .
$$

From the statement of the problem, we have

$$
y=2 .
$$

Finally, by the Hand Shaking Theorem, we have

$$
3 x+5 y+7 z=2 \times 27
$$

The three equations in three unknowns reduce to a system of two equations in two unknowns:

$$
\begin{gathered}
x+z=8 \\
3 x+7 z=44 .
\end{gathered}
$$

Hence, $z=5$.
3. Let G be a simple connected graph. The square of G, denoted G^{2}, is defined to be the graph with the same vertex set as G in which two vertices u and v are adjacent if and only if the distance between u and v in G is 1 or 2 .

In other words, in the square of a graph G, vertices that were adjacent remain so. And in addition, vertices that were connected by a path of length 2 become adjacent.
(a) Show that the square of $K_{1,3}$ is K_{4}.
(b) Find two more graphs whose square is K_{4}.

Solution:

(a) Consider the following labeled representation of $K_{1,3}$.

By definition, $K_{1,3}^{2}$ will keep the existing edges of $K_{1,3}$ and then join a to b, a to c and b to c.

Hence $K_{1,3}^{2}$ is isomorphic to K_{4}.
(b) Two more examples are

$$
C_{4}\left(\cong K_{2,2}\right)
$$

and the graph G

4. What is the number of regular binary trees on 9 vertices?

Solution: A binary tree is an ordered rooted tree in which each vertex has at most two children. A regular binary tree is a binary tree where every vertex has an even number of children. We proved in class that the number of regular binary trees on $2 n+1$ vertices is C_{n}, the $n^{\text {th }}$ Catalan number. As $9=2 \times 4+1$, the number of regular binary trees on 9 vertices is

$$
C_{4}=\frac{1}{4+1}\binom{2 \times 4}{4}=\frac{1}{5} \times 70=14 .
$$

5. Find the weight of a minimum cost spanning tree for the weighted graph below.

Solution: We employ Kruskal's algorithm. First, choose all edges weighted 12 or 3, except for the one edge of weight 3 that would create a cycle. Then choose the single edge of weight 4 that does not create a cycle. Finally, add the one of the edges of weight 5 that will not create a cycle. All $12-1=11$ edges are thus accounted for and we have a minimum cost spanning tree of weight 27 .

6. Determine whether the given graph is Hamiltonian. If it is, find a Hamiltonian cycle. If it is not, prove it is not.

Solution: A necessary condition for a graph to be Hamiltonian is that for each nonempty $S \subseteq V(G)$, the number of components of $G-S$ is less that or equal to the number of elements of S. Let G be the graph given above and let $S=\{u, v\}$ be the set of vertices as indicated below.

Then the graph $G-S$ has 3 components.

Since $3 \not \leq 2$, the graph G is not Hamiltonian.
7. Give a clear and careful proof of the following: A connected bipartite graph has a unique bipartition (except for, of course, interchanging the two bipartition sets).
Solution: Let G be a connected bipartite graph. Let $X, Y, X^{\prime}, Y^{\prime} \subseteq V(G)$, where X, Y and X^{\prime}, Y^{\prime} are distinct bipartitions of the vertex set of G.

We then have that
(a) $X \cup Y=V(G)=X^{\prime} \cup Y^{\prime}$
(b) $X \cap Y=\emptyset=X^{\prime} \cap Y^{\prime}$
(c) $G[X], G[Y], G\left[X^{\prime}\right]$ and $G\left[Y^{\prime}\right]$ are all null graphs.

Let $A=\left(X \cap X^{\prime}\right) \cup\left(Y \cap Y^{\prime}\right)$ and $B=\left(Y \cap X^{\prime}\right) \cup\left(X \cap Y^{\prime}\right)$. Note that the set A cannot be empty. If it were, it would mean that $X \subseteq Y^{\prime}$ and $Y \subseteq X^{\prime}$. This, in turn, implies that $X=Y^{\prime}$ and $Y=X^{\prime}$, i.e., the bipartition sets have been switched. Similarly, $B \neq \emptyset$.

Now let $v \in A \subseteq V(G)$. Then either $v \in X \cap X^{\prime}$ or $v \in Y \cap Y^{\prime}$. If $v \in X \cap X^{\prime}$, then v cannot be adjacent to any vertex in $Y \cap X^{\prime}$, since $G\left[X^{\prime}\right]$ is a null graph. Furthermore, v cannot be adjacent to any vertex in $X \cap Y^{\prime}$, since $G[X]$ is a null graph. Hence, v is not adjacent to any vertex in B. We reach the same conclusion when $v \in Y \cap Y^{\prime}$.

So we have that no vertex in A can have a vertex in B as a neighbor. Since

$$
\begin{aligned}
A \cup B & =\left[\left(X \cap X^{\prime}\right) \cup\left(Y \cap Y^{\prime}\right)\right] \cup\left[\left(Y \cap X^{\prime}\right) \cup\left(X \cap Y^{\prime}\right)\right] \\
& =\left[\left(X \cap X^{\prime}\right) \cup\left(Y \cap X^{\prime}\right)\right] \cup\left[\left(Y \cap Y^{\prime}\right) \cup\left(X \cap Y^{\prime}\right)\right] \\
& =\left[(X \cup Y) \cap X^{\prime}\right] \cup\left[(Y \cup X) \cap Y^{\prime}\right] \\
& =\left[V(G) \cap X^{\prime}\right] \cup\left[V(G) \cap Y^{\prime}\right] \\
& =X^{\prime} \cup Y^{\prime} \\
& =V(G)
\end{aligned}
$$

the graph G is disconnected. Contradiction.
8. Compute the total resistance between u and v in the electrical network of resistors corresponding to the graph below, where each resistor is one ohm.

Solution: Let G be the graph corresponding to the given electrical network. We compute $\tau(G)$ using the Matrix-Tree Theorem. First label graph G as follows.

Then

$$
\mathcal{T}(G)=D(G)-A(G)=\left(\begin{array}{ccccc}
3 & -1 & 0 & -1 & -1 \\
-1 & 3 & -1 & 0 & -1 \\
0 & -1 & 3 & -1 & -1 \\
-1 & 0 & -1 & 3 & -1 \\
-1 & -1 & -1 & -1 & 4
\end{array}\right)
$$

By the Matrix-Tree Theorem, $\tau(G)$ is equal to the $(5,5)$-cofactor of \mathcal{T}. Thus

$$
\tau(G)=\operatorname{det}\left(\begin{array}{cccc}
3 & -1 & 0 & -1 \\
-1 & 3 & -1 & 0 \\
0 & -1 & 3 & -1 \\
-1 & 0 & -1 & 3
\end{array}\right)
$$

To make our lives easier, we first subtract column 2 from column 4.

$$
\tau(G)=\operatorname{det}\left(\begin{array}{cccc}
3 & -1 & 0 & 0 \\
-1 & 3 & -1 & -3 \\
0 & -1 & 3 & 0 \\
-1 & 0 & -1 & 3
\end{array}\right)
$$

Then we expand the determinant along the first row.

$$
\begin{aligned}
\tau(G) & =(-1)^{1+1} \cdot 3 \cdot \operatorname{det}\left(\begin{array}{ccc}
3 & -1 & -3 \\
-1 & 3 & 0 \\
0 & -1 & 3
\end{array}\right)+(-1)^{1+2} \cdot(-1) \cdot \operatorname{det}\left(\begin{array}{ccc}
-1 & -1 & -3 \\
0 & 3 & 0 \\
-1 & -1 & 3
\end{array}\right) \\
& =3 \times 21-18 \\
& =45
\end{aligned}
$$

Now we are interested in $\tau_{u v}\left(G^{\prime}\right)$, or rather $\tau\left(G^{\prime \prime}\right)$. That is, the number of spanning trees of the graph obtained from G by identifying the vertices u and v.

We can visualize $G^{\prime \prime}$ simply by giving u and v the same label in G.

Or equivalently,

Then

$$
\mathcal{T}\left(G^{\prime \prime}\right)=D\left(G^{\prime \prime}\right)-A\left(G^{\prime \prime}\right)=\left(\begin{array}{cccc}
6 & -2 & -2 & -2 \\
-2 & 3 & 0 & -1 \\
-2 & 0 & 3 & -1 \\
-2 & -1 & -1 & 4
\end{array}\right)
$$

Hence

$$
\tau\left(G^{\prime \prime}\right)=\operatorname{det}\left(\begin{array}{ccc}
6 & -2 & -2 \\
-2 & 3 & 0 \\
-2 & 0 & 3
\end{array}\right)=30
$$

From the results shown in class, we now conclude that the total resistance of the network between u and v is given by.

$$
R_{t}=\frac{\tau\left(G^{\prime \prime}\right)}{\tau(G)}=\frac{30}{45}=\frac{2}{3} .
$$

