On Generalized Periodic-like Rings

Howard E. Bell[†] and Adil Yaqub

Abstract: Let R be a ring with center Z, Jacobson radical J, and set N of all nilpotent elements. Call R generalized periodic-like if for all $x \in R \setminus (N \cup J \cup Z)$ there exist positive integers m, n of opposite parity for which $x^m - x^n \in N \cap Z$. We identify some basic properties of such rings and prove some results on commutativity.

Let R be a ring; and let N = N(R), Z = Z(R) and J = J(R) denote respectively the set of nilpotent elements, the center, and the Jacobson radical. As usual, we call R periodic if for each $x \in R$, there exist distinct positive integers m, n such that $x^m = x^n$. In [3] we defined R to be generalized periodic (g-p) if for each $x \in R \setminus (N \cup Z)$

(*) there exist positive integers m, n of opposite parity such that $x^m - x^n \in N \cap Z$.

We now define R to be generalized periodic-like (g-p-l) if (*) holds for each $x \in R \setminus (N \cup J \cup Z)$. Clearly, the class of g-p-l rings contains all commutative rings, all nil rings, all Jacobson radical rings, all g-p rings, and some (but not all) periodic rings. It is our purpose to exhibit some general properties of g-p-l rings and to study commutativity of such rings.

1 Preliminary results

To simplify our discussion, we denote by ((m, n)) the ordered pair of integers m, n of opposite parity. The rest of our notation and terminology is standard. For elements $x, y \in R$, the symbol [x, y] denotes the commutator xy - yx; for subsets $X, Y \subseteq R$, [X, Y] denotes the set $\{[x, y] | x \in X, y \in Y\}$; and C(R) denotes the commutator ideal of R. An element $x \in R$ is called regular if it is not a zero divisor; it is called periodic if there exist distinct positive

[†]Supported by the Natural Sciences and Engineering Research Council of Canada, Grant 3961.

integers m, n for which $x^m = x^n$; and it is called potent if there exists an integer n > 1 for which $x^n = x$. The set of all potent elements of R is denoted by P or P(R), and the prime radical by $\mathfrak{P}(R)$. Finally, R is called reduced if $N(R) = \{0\}$.

Lemma 1.1 Let R be an arbitrary g-p-l ring.

- (i) Every epimorphic image of R is a g-p-l ring.
- (ii) $N \subseteq J$.
- (iii) If $[N, J] = \{0\}$, then N is an ideal.
- (iv) $C(R) \subseteq J$.
- (v) If e is an idempotent, the additive order of which is not a power of 2, then $e \in Z$.
- Proof. (i) is clear, once we recall that if $\sigma: R \to S$ is an epimorphism, then $\sigma(J(R)) \subseteq J(S)$.
- (ii) Let S = R/J(R). Then by (i), S is a g-p-l ring; and since $J(S) = \{0\}$, S is a g-p ring. It follows from Theorem 1 of [3] that N(S) is an ideal of S, hence $N(S) \subseteq J(S) = \{0\}$ and therefore $N(R) \subseteq J(R)$.
- (iii) Since $N \subseteq J$, N is commutative and hence (N, +) is an additive subgroup. Let $a \in N$ and $x \in R$. Then $ax \in J$, so [a, ax] = 0 i.e. $a^2x = axa$. It follows that $(ax)^2 = a^2x^2$ and that $(ax)^n = a^nx^n$ for all positive integers n. Therefore $ax \in N$.
- (iv) As in (ii), R/J(R) is a g-p ring; hence, by Lemma 2 of [3], $C(R/J(R)) = \{0\}$. Therefore $C(R) \subseteq J(R)$.
- (v) If $e \notin Z$, then $-e \notin J \cup Z$ and there exists ((m, n)) such that $(-e)^m (-e)^n \in N \cap Z$. Since m, n are of opposite parity, we get $2e \in N$, so that $2^k e = 0$ for some k.
- **Lemma 1.2** Let R be an arbitrary g-p-l ring, and let $x \in R$. Then either $x \in J \cup Z$, or there exists a positive integer q and an idempotent e such that $x^q = x^q e$.
- Proof. If $x \notin J \cup Z$, there exists ((m,n)) such that $x^m x^n \in N \cap Z$. Therefore there exists a positive integer q and $g(t) \in \mathbb{Z}[t]$ such that $x^q = x^{q+1}g(x)$. It is now easy to verify that $e = (xq(x))^q$ is an idempotent with $x^q = x^q e$.
- **Lemma 1.3** Let R be a g-p-l ring and σ an epimorphism from R to S. Then $N(S) \subseteq \sigma(J(R)) \cup Z(S)$.

Proof. Let $s \in N(S)$ with $s^k = 0$ and let $d \in R$ such that $\sigma(d) = s$. If $d \in J(R) \cup Z(R)$, then obviously $s \in \sigma(J(R)) \cup Z(S)$; hence we may suppose that there exists ((m,n)) with n > m such that $d^m - d^n \in N(R) \cap Z(R)$. It is easy to show that $d - d^h \in N$, where h = n - m + 1; thus

$$d - d^{k+1}d^{k(h-2)} = d - d^h + d^{h-1}(d - d^h) + \dots + (d^{h-1})^{k-1}(d - d^h)$$

is a sum of commuting nilpotent elements, hence is in N(R) and therefore in J(R). Consequently $s - s^{k+1}s^{k(h-2)} \in \sigma(J(R))$; and since $s^{k+1} = 0$, $s \in \sigma(J(R))$.

We finish this section by stating two known results on periodic elements.

Lemma 1.4 Let R be an arbitrary ring, and let $N^* = \{x \in R \mid x^2 = 0\}.$

- (i) [1, Lemma 1] If $x \in R$ is periodic, then $x \in P + N$.
- (ii) [2, Theorem 2] If N^* is commutative and N is multiplicatively closed, then $PN \subseteq N$.

2 Commutativity results

Theorem 2.1 If R is a g-p-l ring with $J \subseteq Z$, then R is commutative.

Proof. Suppose $x \notin Z$. Then by Lemma 1.1 (ii), we have ((m, n)) with n > m such that $x^m - x^n \in N \cap Z$. Consequently $x^{n-m+1} - x \in N$; and since $N \subseteq Z$, commutativity of R follows by a well-known theorem of Herstein [4].

Theorem 2.2 If R is any g-p-l ring with 1, then R is commutative.

Proof. We show that if R is g-p-l with 1, then $J \subseteq Z$. Suppose that $x \in J \setminus Z$. Then $-1 + x \notin J \cup Z$, so there exists ((m, n)) such that $(-1 + x)^m - (-1 + x)^n \in N \cap Z$; and we may assume that m is even and n is odd. Since $N \subseteq J$, it follows that $2 \in J$; thus for every integer m, $2m \in J$, and hence 2m + 1 is invertible.

Now consider $((m_1, n_1))$ such that $(1+x)^{m_1} - (1+x)^{n_1} \in N \cap Z$. Then $(m_1-n_1)x + x^2p(x) \in N \cap Z$ for some $p(t) \in \mathbb{Z}[t]$; and since $m_1 - n_1$ is central and invertible, we get $x + x^2w$ in $N \cap Z$ for some w in R with [x, w] = 0. Thus, we have a positive integer q and an element q in R such that [x, y] = 0 and $x^q = x^{q+1}y$. It follows that $e = (xy)^q$ is an idempotent such that $x^q = x^q e$; and since J contains no nonzero idempotents, x is in N.

Let α be the smallest positive integer for which $x^k \in Z$ for all $k \geq \alpha$, and note that, since $x \notin Z$, $\alpha \geq 2$. But $1 + x^{\alpha - 1} \notin J \cup Z$, so there exists $((m_2, n_2))$ such that $(1 + x^{\alpha - 1})^{m_2} - (1 + x^{\alpha - 1})^{n_2} \in N \cap Z$; hence $(m_2 - n_2)x^{\alpha - 1} \in Z$. But since $m_2 - n_2$ is invertible and central, we conclude that $x^{\alpha - 1} \in Z$ – a contradiction.

Theorem 2.3 If R is a reduced g-p-l ring with $R \neq J$, then R is commutative.

Proof. If $R = J \cup Z$, then R = Z and we are finished. Otherwise, if $x \in R \setminus (J \cup Z)$, there exists ((m, n)) such that $x^m - x^n \in N \cap Z = \{0\}$; hence x is periodic, and by Lemma 1.4(i) $x \in P$. Thus, $R = P \cup J \cup Z$; and to complete the proof we need only to show that $P \subseteq Z$.

Let $y \in P$, and let k > 1 be such that $y^k = y$. Then $e = y^{k-1}$ is an idempotent for which y = ye, and $e \in Z$ since $N = \{0\}$. Now eR is an ideal of R, so that $J(eR) = eR \cap J(R)$; hence eR is a g-p-l ring with 1, which is commutative by Theorem 2.2. Therefore [ey, ew] = 0 for all $w \in R$; and since ey = y and $e \in Z$, we conclude that [y, w] = 0 for all $w \in R$ – i.e. $y \in Z$.

Theorem 2.4 If R is a g-p-l ring in which J is commutative and all idempotents are central, then R is commutative.

Proof. We may express R as a subdirect product of subdirectly irreducible rings, each of which is an epimorphic image of R. Let R_{α} be such a subdirectly irreducible ring, and let $\sigma: R \to R_{\alpha}$ be an epimorphism. Let $x_{\alpha} \in R_{\alpha}$ and let $x \in R$ such that $\sigma(x) = x_{\alpha}$. By Lemma 1.2, $x \in J(R) \cup Z(R)$ or there exists an idempotent $e \in R$ and a positive integer q such that $x^q = x^q e$. Thus, either $x_{\alpha} \in \sigma(J(R)) \cup Z(R_{\alpha})$ or $x_{\alpha}^q = x_{\alpha}^q e_{\alpha}$, where $e_{\alpha} = \sigma(e)$ is a central idempotent of R_{α} . But R_{α} is subdirectly irreducible, hence if R_{α} has a nonzero central idempotent, then R_{α} has 1 and is commutative by Theorem 2.2.

To complete the proof, we need only consider the case that for each $x_{\alpha} \in R_{\alpha}$, $x_{\alpha} \in \sigma(J(R)) \cup Z(R_{\alpha}) \cup N(R_{\alpha})$. Now by Lemma 1.3, $N(R_{\alpha}) \subseteq \sigma((J(R)) \cup Z(R_{\alpha})$; hence $R_{\alpha} = \sigma(J(R)) \cup Z(R_{\alpha})$, which is clearly commutative. Therefore R is commutative.

Theorem 2.4 has two corollaries, the first of which is immediate when we recall Lemma 1.1(v).

Corollary 2.5 If R is a 2-torsion-free g-p-l ring with J commutative, then R is commutative.

Corollary 2.6 Let R be a g-p-l ring containing a regular central element c. If J is commutative, then R is commutative.

Proof. It suffices to show that $N \subseteq Z$, since this condition implies that idempotents are central. Consider first the case $c \in J$. Then $cJ \subseteq J^2$, which is central since J is commutative. Since c is regular and central, it is immediate that $J \subseteq Z$, so certainly $N \subseteq Z$.

Now assume that $c \notin J$, and suppose that $a \in N \setminus Z$. Then $c + a \notin J \cup Z$, and there exists ((m,n)) such that $(c+a)^m - (c+a)^n \in N \cap Z$. It follows that $c^m - c^n$ is a sum of commuting nilpotent elements, hence $c^m - c^n \in N$ and there exists q such that $c^q = c^{q+1}p(c)$ for some $p(t) \in \mathbb{Z}[t]$. As before, we get an idempotent e such that $c^q = c^q e$ and [c, e] = 0. Now e cannot be a zero divisor, since that would force e to be a zero divisor; therefore e has a regular idempotent – i.e. e has 1. We have contradicted Theroem 2.2, so e0 as claimed.

3 Nil-commutator-ideal theorems

Theorem 3.1 Let R be a g-p-l ring. If $R \neq J$ and N is an ideal, then C(R) is nil.

Proof. We may assume $R \neq J \cup Z$, since otherwise R is commutative. Let $\bar{R} = R/N$, and let the element x + N of \bar{R} be denoted by \bar{x} . We need to show that \bar{R} is commutative – a conclusion that follows from Theorem 2.3 once we show that $J(\bar{R}) \neq \bar{R}$.

Suppose that $J(\bar{R}) = \bar{R}$, and let $x \in R \setminus (J \cup Z)$. By Lemma 1.2, there exists a positive integer q and an idempotent $e \in R$ such that $x^q = x^q e$; and it follows that \bar{e} is an idempotent of \bar{R} such that $\bar{x}^q = \bar{x}^q \bar{e}$. But $\bar{R} = J(\bar{R})$ contains no nonzero idempotents, so that $\bar{x}^q = 0 = \bar{x}$ and hence $x \in N(R)$. This contradicts the fact that $x \notin J \cup Z$, hence $\bar{R} \neq J(\bar{R})$ as required.

Theorem 3.2 If R is a g-p-l ring and J is commutative, then C(R) is nil.

Proof. If R = J, then R is commutative. If $R \neq J$, N is an ideal by Lemma 1.1(iii) and C(R) is nil by Theorem 3.1.

In fact, we can improve this result as follows:

Theorem 3.3 Let R be a g-p-l ring with $R \neq J$. If N is commutative, then C(R) is nil.

This result follows from Theorem 3.1, once we prove our final theorem.

Theorem 3.4 Let R be a g-p-l ring with $R \neq J$. If N is commutative, then N is an ideal.

Proof. Again we may assume that $R \neq J \cup Z$. Since N is commutative, N is an additive subgroup of R. To show that $RN \subseteq N$, it is convenient to work with the ring $\bar{R} = R/\mathfrak{P}(R)$. As in the proof of Theorem 3.1, we have $J(\bar{R}) \neq \bar{R}$; and if $\bar{R} = Z(\bar{R})$, then $C(R) \subseteq \mathfrak{P}(R) \subseteq N$. Therefore, we assume that $\bar{R} \neq J(\bar{R}) \cup Z(\bar{R})$. We note that if $x + N = \bar{x} \in N(\bar{R})$, then $x \in N(R)$; consequently $N(\bar{R})$ is commutative and hence is an additive subgroup of \bar{R} .

Now \bar{R} is semiprime and therefore $N(\bar{R}) \cap Z(\bar{R}) = \{0\}$. It follows that if $\bar{x} \in \bar{R} \setminus (J(\bar{R}) \cup Z(\bar{R}))$, there exists ((m,n)) such that $\bar{x}^m = \bar{x}^n$ – i.e., \bar{x} is periodic. Thus $\bar{x} \in P(\bar{R}) + N(\bar{R})$ by Lemma 1.4(i); and by commutativity of $N(\bar{R})$ and Lemma 1.4(ii) we get $\bar{x}N(\bar{R}) \subseteq N(\bar{R})$. Moreover, if $\bar{y} \in Z(\bar{R})$, $\bar{y}N(\bar{R}) \subseteq N(\bar{R})$. Now let $\bar{y} \in J(\bar{R}) \setminus Z(\bar{R})$, and let $\bar{x} \in \bar{R} \setminus (J(\bar{R}) \cup Z(\bar{R}))$. Then $\bar{x} + \bar{y} \not\in J(\bar{R})$, hence it is in $\bar{R} \setminus (J(\bar{R}) \cup Z(\bar{R}))$ or in $Z(\bar{R})$; and in either case $(\bar{x} + \bar{y})N(\bar{R})$ and $\bar{x}N(\bar{R})$ are in $N(\bar{R})$, so that $\bar{y}N(\bar{R}) \subseteq N(\bar{R})$. We have shown that $N(\bar{R})$ is an ideal of \bar{R} ; therefore if $x \in R$ and $a \in N(R)$, $\bar{x}\bar{a} \in N(\bar{R})$ and hence $xa \in N(R)$. Thus, N(R) is an ideal of R.

Remark. There exist noncommutative g-p-l rings with J commutative. An accessible example is $\left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \mid a, b \in GF(2) \right\}$.

References

- [1] H.E. BELL, A commutativity study for periodic rings, Pacific J. Math. 70 (1977), 29–36.
- [2] H.E. BELL and H. TOMINAGA, On periodic rings and related rings, Math. J. Okayama Univ. 28(1986), 101–103.
- [3] H.E. BELL and A. YAQUB, Generalized periodic rings, Internat. J. Math. & Math. Sci. 19(1996), 87–92.
- [4] I.N. HERSTEIN, A generalization of a theorem of Jacobson III, Amer. J. Math. 75(1953), 105–111.